Graphene-based thermally conductive composites have been proposed as effective thermal management materials for cooling high-power electronic devices.However,when flexible graphene nanosheets are assembled into macros...Graphene-based thermally conductive composites have been proposed as effective thermal management materials for cooling high-power electronic devices.However,when flexible graphene nanosheets are assembled into macroscopic thermally conductive composites,capillary forces induce shrinkage of graphene nanosheets to form wrinkles during solution-based spontaneous drying,which greatly reduces the thermal conductivity of the composites.Herein,graphene nanosheets/aramid nanofiber(GNS/ANF)composite films with high thermal conductivity were prepared by in-plane stretching of GNS/ANF composite hydrogel networks with hydrogen bonds andπ-πinteractions.The in-plane mechanical stretching eliminates graphene nanosheets wrinkles by suppressing inward shrinkage due to capillary forces during drying and achieves a high in-plane orientation of graphene nanosheets,thereby creating a fast in-plane heat transfer channel.The composite films(GNS/ANF-60 wt%)with eliminated graphene nanosheets wrinkles showed a significant increase in thermal conductivity(146 W m^(−1)K^(−1))and tensile strength(207 MPa).The combination of these excellent properties enables the GNS/ANF composite films to be effectively used for cooling flexible LED chips and smartphones,showing promising applications in the thermal management of high-power electronic devices.展开更多
With the increasing demand for terahertz(THz)technology in security inspection,medical imaging,and flexible electronics,there is a significant need for stretchable and transparent THz electromagnetic interference(EMI)...With the increasing demand for terahertz(THz)technology in security inspection,medical imaging,and flexible electronics,there is a significant need for stretchable and transparent THz electromagnetic interference(EMI)shielding materials.Existing EMI shielding materials,like opaque metals and carbon-based films,face challenges in achieving both high transparency and high shielding efficiency(SE).Here,a wrinkled structure strategy was proposed to construct ultra-thin,stretchable,and transparent terahertz shielding MXene films,which possesses both isotropous wrinkles(height about 50 nm)and periodic wrinkles(height about 500 nm).Compared to flat film,the wrinkled MXene film(8 nm)demonstrates a remarkable 36.5%increase in SE within the THz band.The wrinkled MXene film exhibits an EMI SE of 21.1 dB at the thickness of 100 nm,and an average EMI SE/t of 700 dBμm^(−1)over the 0.1-10 THz.Theoretical calculations suggest that the wrinkled structure enhances the film’s conductivity and surface plasmon resonances,resulting in an improved THz wave absorption.Additionally,the wrinkled structure enhances the MXene films’stretchability and stability.After bending and stretching(at 30%strain)cycles,the average THz transmittance of the wrinkled film is only 0.5%and 2.4%,respectively.The outstanding performances of the wrinkled MXene film make it a promising THz electromagnetic shielding materials for future smart windows and wearable electronics.展开更多
Nowadays,the increasing electromagnetic waves generated by wearable devices are becoming an emerging issue for human health,so stretchable electromagnetic interference(EMI)shielding materials are highly demanded.Eleph...Nowadays,the increasing electromagnetic waves generated by wearable devices are becoming an emerging issue for human health,so stretchable electromagnetic interference(EMI)shielding materials are highly demanded.Elephant trunks are capable of grabbing fragile vegetation and tearing trees thanks not only to their muscles but also to their folded skins.Inspired by the wrinkled skin of the elephant trunks,herein,we propose a winkled conductive film based on single-walled carbon nanotubes(SWCNTs)for multifunctional EMI applications.The conductive film has a sandwich structure,which was prepared by coating SWCNTs on both sides of the stretched elastic latex cylindrical substrate.The shrinking-induced winkled conductive network could withstand up to 200%tensile strain.Typically,when the stretching direction is parallel to the polarization direction of the electric field,the total EMI shielding effectiveness could surprisingly increase from 38.4 to 52.7 dB at 200%tensile strain.It is mainly contributed by the increased connection of the SWCNTs.In addition,the film also has good Joule heating performance at several voltages,capable of releasing pains in injured joints.This unique property makes it possible for strain-adjustable multifunctional EMI shielding and wearable thermotherapy applications.展开更多
To verify the effectiveness of digital optical 3D image analyzer EvaSKIN in the objective and quantitative evaluation of wrinkles.A total of 115 subjects were recruited,the facial images of the subjects were collected...To verify the effectiveness of digital optical 3D image analyzer EvaSKIN in the objective and quantitative evaluation of wrinkles.A total of 115 subjects were recruited,the facial images of the subjects were collected by digital optical 3D image analyzer and manual camera,the changes of crow’s feet with age were analyzed.Pictures obtained by manual photography can be directly used for observation and preliminary grading of wrinkles.However,the requirements for evaluators are high,and the results are prone to errors,which will affect the accuracy of the evaluation.Therefore,skilled raters are needed.Compared with the manual photography method,the digital optical 3D image analyzer EvaSKIN can realize three-dimensional extraction of wrinkles,and obtain the change trend of crow’s feet with age.20~30 years old,wrinkles begin to appear slowly;wrinkles will increase rapidly at the age of 30~50;The length of 50~60 year old wrinkles is basically fixed,the wrinkles develop longitudewise,gradually widen and deepen,and the area,depth and volume increase is obvious,and the skin aging condition is intensified.the digital optical 3D image analyzer EvaSKIN realizes the 3D extraction of wrinkles,quantifies the circumference,area,average depth,maximum depth and volume of wrinkles,realizes the objective and quantitative evaluation of wrinkle state,is more accurate in the measurement of wrinkles,and provides a new instrument and method for the evaluation of wrinkles.it is a perfect and supplement to the traditional evaluation methods,and to a certain extent,it helps the research and development and evaluation institutions of cosmetics to obtain more abundant and three-dimensional data support.展开更多
Introduction: The need for cosmetic facial enhancement procedures with minimal down time and low risk has led to the development of methods for non-surgical skin rejuvenation. Various ablative lasers were developed, w...Introduction: The need for cosmetic facial enhancement procedures with minimal down time and low risk has led to the development of methods for non-surgical skin rejuvenation. Various ablative lasers were developed, which remove the full skin surface in a controlled manner. However, the prolonged recovery and the significant risks prompted the development of fractional lasers which ablate the skin in a fractional manner, leaving untreated areas to improve healing process. In the past few years, fractional radiofrequency (RF) systems have been introduced that enable controlled skin resurfacing accompanied with dermal collagen remodeling. The new TriFractional technology from Pollogen? is designed to enable skin resurfacing and treatment of wrinkles using RF energy. The objective of the current research was to evaluate the safety and effectiveness of the novel TriFractional technology using the TriFractional applicator (A3F) for micro-ablative skin resurfacing and the treatment of wrinkles and acne scars. Methods: Healthy volunteers consented to undergo TriFractional treatments for various aesthetic indications. In addition, in-vivo and ex-vivo histologycal results showing immediate and long term effects of the TriFractional technology were obtained. A portion of the subjects underwent the complete TriLipo MedTM Procedure which includes 2 TriFractional treatments spaced one month apart, with 2 TriLipo RF + Dynamic Muscle Activation (DMA) face treatments two weeks after each TriFractional treatment. Results: Subjects experienced an improvement of wrinkles, skin texture and acne scars along with facial contouring. No significant adverse effects were detected post-treatment. Histology findings demonstrated immediate and long term TriFractional effects on both epidermal and dermal skin layers. Conclusions: TriFractional is a promising technology for skin resurfacing, treatment of wrinkles and improvement of additional aesthetic indications such as acne scars. The TriLipo MEDTM procedure is a unique combination approach for total facial rejuvenation and contouring.展开更多
The minimal clinically important difference(MCID)represents a pivotal metric in bridging the gap between statistical significance and clinical relevance,addressing the direct impact of medical interventions from the p...The minimal clinically important difference(MCID)represents a pivotal metric in bridging the gap between statistical significance and clinical relevance,addressing the direct impact of medical interventions from the patient's perspective.This comprehensive review analyzes the evolution,applications,and challenges of MCID across medical specialties,emphasizing its necessity in ensuring that clinical outcomes not only demonstrate statistical significance but also offer genuine clinical utility that aligns with patient expectations and needs.We discuss the evolution of MCID since its inception in the 1980s,its current applications across various medical specialties,and the methodologies used in its calculation,highlighting both anchor-based and distribution-based approaches.Furthermore,the paper delves into the challenges associated with the application of MCID,such as methodological variability and the interpretation difficulties that arise in clinical settings.Recommendations for the future include standardizing MCID calculation methods,enhancing patient involvement in setting MCID thresholds,and extending research to incorporate diverse global perspectives.These steps are critical to refining the role of MCID in patient-centered healthcare,addressing existing gaps in methodology and interpretation,and ensuring that medical interventions lead to significant,patient-perceived improvements.展开更多
Machine learning(ML)is a type of artificial intelligence that assists computers in the acquisition of knowledge through data analysis,thus creating machines that can complete tasks otherwise requiring human intelligen...Machine learning(ML)is a type of artificial intelligence that assists computers in the acquisition of knowledge through data analysis,thus creating machines that can complete tasks otherwise requiring human intelligence.Among its various applications,it has proven groundbreaking in healthcare as well,both in clinical practice and research.In this editorial,we succinctly introduce ML applications and present a study,featured in the latest issue of the World Journal of Clinical Cases.The authors of this study conducted an analysis using both multiple linear regression(MLR)and ML methods to investigate the significant factors that may impact the estimated glomerular filtration rate in healthy women with and without non-alcoholic fatty liver disease(NAFLD).Their results implicated age as the most important determining factor in both groups,followed by lactic dehydrogenase,uric acid,forced expiratory volume in one second,and albumin.In addition,for the NAFLD-group,the 5th and 6th most important impact factors were thyroid-stimulating hormone and systolic blood pressure,as compared to plasma calcium and body fat for the NAFLD+group.However,the study's distinctive contribution lies in its adoption of ML methodologies,showcasing their superiority over traditional statistical approaches(herein MLR),thereby highlighting the potential of ML to represent an invaluable advanced adjunct tool in clinical practice and research.展开更多
Some studies have confirmed the neuroprotective effect of remote ischemic conditioning against stroke. Although numerous animal researches have shown that the neuroprotective effect of remote ischemic conditioning may...Some studies have confirmed the neuroprotective effect of remote ischemic conditioning against stroke. Although numerous animal researches have shown that the neuroprotective effect of remote ischemic conditioning may be related to neuroinflammation, cellular immunity, apoptosis, and autophagy, the exact underlying molecular mechanisms are unclear. This review summarizes the current status of different types of remote ischemic conditioning methods in animal and clinical studies and analyzes their commonalities and differences in neuroprotective mechanisms and signaling pathways. Remote ischemic conditioning has emerged as a potential therapeutic approach for improving stroke-induced brain injury owing to its simplicity, non-invasiveness, safety, and patient tolerability. Different forms of remote ischemic conditioning exhibit distinct intervention patterns, timing, and application range. Mechanistically, remote ischemic conditioning can exert neuroprotective effects by activating the Notch1/phosphatidylinositol 3-kinase/Akt signaling pathway, improving cerebral perfusion, suppressing neuroinflammation, inhibiting cell apoptosis, activating autophagy, and promoting neural regeneration. While remote ischemic conditioning has shown potential in improving stroke outcomes, its full clinical translation has not yet been achieved.展开更多
Based on the deformation characteristic of regular polygonal box stamped parts and the superfluous triangle material wrinkle model,the criterion of regular polygonal box stamped parts without wrinkle was deduced and u...Based on the deformation characteristic of regular polygonal box stamped parts and the superfluous triangle material wrinkle model,the criterion of regular polygonal box stamped parts without wrinkle was deduced and used to predict and control the wrinkle limit.According to the fracture model,the criterion of regular polygonal box stamped parts without fracture was deduced and used to predict and control the fracture limit.Combining the criterion for stamping without wrinkle with that without fracture,the stamping criterion of regular polygonal box stamped parts was obtained to predict and control the stamping limit.Taken the stainless steel0Cr18Ni9(SUS304)sheet and the square box stamped part as examples,the limit diagram was given to predict and control the wrinkle,fracture and stamping limits.It is suitable for the deep drawing without flange,the deep drawing and stretching combined forming with flange and the rigid punch stretching of plane blank.The limit deep-drawing coefficient and the minimum deep-drawing coefficient can be determined,and the appropriate BHF(blank holder force)and the deep-drawing force can be chosen.These provide a reference for the technology planning,the die and mold design and the equipment determination,and a new criterion evaluating sheet stamping formability,which predicts and controls the stamping process,can be applied to the deep drawing under constant or variable BHF conditions.展开更多
It is generally recognized that Caucasians and Asians have different skin aging features. The aim of this study was to develop a facial wrinkle grading scale for Chinese women. Standard photographs were taken of 242 C...It is generally recognized that Caucasians and Asians have different skin aging features. The aim of this study was to develop a facial wrinkle grading scale for Chinese women. Standard photographs were taken of 242 Chinese women. Six sets of 0 to 9 wrinkle scales with reference photographs and descriptions were selected, including grading scales for resting and hyperkinetic crow's feet, frontalis lines, glabellar frown lines, and nasolabial folds. To identify the scale by objective quantitative measurement, skin surface measurements from the Visioscan~ VC98 were used. To test the reliability and validity of our wrinkle scale, a multi-rater consensus method was used. A double-blind, randomized, vehicle-controlled 12-week study was conducted to use this clinical photo-score to evaluate the efficacy and safety of Centella triterpenes cream~ in treating crow's feet. A newly developed 10-point photographic and descriptive scale emerged from this study. The final atlas of these photographs contained a total of 6 sets with 10 pictures each. From 0 to 9, surface evaluation of smoothness (SEsm) parametric measurements decreased progressively, indicating that the scale increased inversely. Weighted kappa coefficients for intra-assessor were between 0.75-0.87. The overall Kendall's coefficient is 0.86 on the first rating and 0.87 on the second rating. Thirty- six volunteers were recruited and 35 subjects completed a 12-week trial. Clinical photo-score by investigator showed a significant difference (P 〈 0.05) between the treatment side and control side after 4 weeks. Use of these scales in clinical settings to evaluate facial wrinkles in Asians individuals is recommended.展开更多
An effective model(image to wrinkle, ITW) for garment fitting evaluation is presented. The proposed model is to improve the accuracy of garment fitting evaluation based on dressing image. The ITW model is an objective...An effective model(image to wrinkle, ITW) for garment fitting evaluation is presented. The proposed model is to improve the accuracy of garment fitting evaluation based on dressing image. The ITW model is an objective evaluation model of fitting based on the wrinkle index of dressing image. The ITW model consists of two main steps, the gray curve-fitting(GCF) threshold segmentation algorithm and Canny edge detection algorithm. In the ITW model, three types of wrinkle trends are defined. And the network dressing image is evaluated and simulated by three quantitative indexes: wrinkle number, wrinkle regularity and wrinkle unevenness. Finally, the fitness of three kinds of dress effects(tight, fit and loose) is quantified by objective fitting evaluation model.展开更多
Wrinkling patterns and the rules of wrinkling formation and expansion were analyzed in this paper. Direct disturbing method,a numerical method for membrane wrinkling analysis,was established based on finite element pr...Wrinkling patterns and the rules of wrinkling formation and expansion were analyzed in this paper. Direct disturbing method,a numerical method for membrane wrinkling analysis,was established based on finite element programme. The experimental results using photogrammetric procedure were compared with numerical analysis results. It is shown that the reasonable wrinkling deformation can be obtained by rational mesh density and timely removes the initial flaw during analysis. Wrinkles firstly appear on the left and right sides then extend to the membrane center,and the wrinkling amplitude increases with shear displacement. Results from both of the experiments and numerical analysis have a good agreement,which verifies the rationality of the numerical analysis method.展开更多
Flexible multidirectional strain sensors are crucial to accurately determining the complex strain states involved in emerging sensing applications.Although considerable efforts have been made to construct anisotropic ...Flexible multidirectional strain sensors are crucial to accurately determining the complex strain states involved in emerging sensing applications.Although considerable efforts have been made to construct anisotropic structures for improved selective sensing capabilities,existing anisotropic sensors suffer from a trade-off between high sensitivity and high stretchability with acceptable linearity.Here,an ultrasensitive,highly selective multidirectional sensor is developed by rational design of functionally different anisotropic layers.The bilayer sensor consists of an aligned carbon nanotube(CNT)array assembled on top of a periodically wrinkled and cracked CNT-graphene oxide film.The transversely aligned CNT layer bridge the underlying longitudinal microcracks to effectively discourage their propagation even when highly stretched,leading to superior sensitivity with a gauge factor of 287.6 across a broad linear working range of up to 100%strain.The wrinkles generated through a pre-straining/releasing routine in the direction transverse to CNT alignment is responsible for exceptional selectivity of 6.3,to the benefit of accurate detection of loading directions by the multidirectional sensor.This work proposes a unique approach to leveraging the inherent merits of two cross-influential anisotropic structures to resolve the trade-off among sensitivity,selectivity,and stretchability,demonstrating promising applications in full-range,multi-axis human motion detection for wearable electronics and smart robotics.展开更多
The prediction and control criterion of both the wrinkle limit and fracture limit on the cylindrical cup deep-drawing are given, and the prediction and control diagram of both the wrinkle limit and fracture limit are ...The prediction and control criterion of both the wrinkle limit and fracture limit on the cylindrical cup deep-drawing are given, and the prediction and control diagram of both the wrinkle limit and fracture limit are also given. The results show that it is suitable for no-flange cylindrical cup deep-drawing, narrow-flange cylindrical cup deep-drawing, wide-flange cylindrical cup deep-drawing/expanding compound forming and rigid punch expanding forming.展开更多
hased on both the wrinkle model and fracturc model, the wrinkle critical tangent pressure and the fractureon critical radial tensile stress are calculated respectively. The maximum tangent pressure formula in the flan...hased on both the wrinkle model and fracturc model, the wrinkle critical tangent pressure and the fractureon critical radial tensile stress are calculated respectively. The maximum tangent pressure formula in the flange deformation zone and the maximum radial tensile stress formula in the cylinder-wall pass force zone are given, and both theno-wrinkle limitl criterion and no-fracture limit criterion are put froward. The prediction and control criterion anddiagram of both the wrinkle limit and fracture limit on cylindrical cup deep-drawing, the most suitable formingzone and the limit deep-drawing coefficient are obtained. Comparing with present experience formulae and actualproduct's production, this prediction and control are quite accurate.展开更多
Constituting the reasonable control models of the wrinkle limit blank holder forces is the sticking point of the processes of the deep drawing with variable blank-holder forces, especially in the square-box forming. T...Constituting the reasonable control models of the wrinkle limit blank holder forces is the sticking point of the processes of the deep drawing with variable blank-holder forces, especially in the square-box forming. To begin with, a mode of segmenting flange of the square-box into eight zones is put forward according to the fact that the uniformity of flange deforming can be improved by control-ling segment blank-holders. Considering the integral influence of shear stress, a new concept, strain relaxation factor is defined. Hereby, the law of distribution of stress and stain in the deforming flange of square-box is achieved. Then based on these mechanical analysis models and the energy principle, the wrinkling flexivity functions of the straight flange and the circle flange are given, and the corresponding formulae of wrinkling limit blank-holder force in these two situations are also educed. In these processes, ply-anisotropy, strain hardening, thickness and friction are considered. In the end, a calculating example is designed to validate the rationality of the formulae of wrinkling limit blank-holder force, at the same time, the influences of the ply-anisotropy exponent and the strain hardening exponent on the wrinkle limit blank holder forces are also analyzed.展开更多
In this paper, the principle of multi-point forming (MPF) technique is presented. One of the most serious defects, wrinkling, during the multi-point forming process of a shallow rectangle cup is discussed by means of ...In this paper, the principle of multi-point forming (MPF) technique is presented. One of the most serious defects, wrinkling, during the multi-point forming process of a shallow rectangle cup is discussed by means of numerical simulation on the shallow rectangle cup forming process. The effects of thickness, material of sheet metal and the pressure of the blank holder are investigated. Based on the simulation results, the reasons and control methods of wrinkling are pointed out. Moreover, the experiment on the multi-point die forming of the shallow rectangle cup by the MPF machine is done to validate the efficiency of the numerical simulation, and the result proves that the application of an elastic cushion in the forming can restrain wrinkling efficiently.展开更多
Wrinkling analysis of a rectangular membrane with a single crease under shearing is performed to understand the wrinkle-crease interaction behaviors. The crease is considered by introducing the residual stresses from ...Wrinkling analysis of a rectangular membrane with a single crease under shearing is performed to understand the wrinkle-crease interaction behaviors. The crease is considered by introducing the residual stresses from creasing and the effective modulus into the baseline configuration with assumed circular cross-sectional crease geometry. The wrinkling analysis of the creased membrane is then performed by using the direct perturb-force (DP) simulation technique which is based on our modified displacement components (MDC) method. Results reveal that the crease may influence the stress transfer path in the membrane and further change the wrinkling direction. The crease appears to improve the bending stiffness of the membrane which has an effective resistance on the wrinkling evolution. The effects of the crease orientation on wrinkle-crease interaction are studied toward the end of this paper. The results show that the wrinkling amplitude, wavelength, and direction increase as the crease orientation increases, and the wrinkling number decreases with the increasing crease orientation. These results will be of great benefit to the analysis and the control of the wrinkles in the membrane structures.展开更多
Background: A special pillow was designed to redistribute mechanical stress during sleeping in order to slow down the formation of facial skin wrinkles. Objective: To investigate whether sleeping on a specially design...Background: A special pillow was designed to redistribute mechanical stress during sleeping in order to slow down the formation of facial skin wrinkles. Objective: To investigate whether sleeping on a specially designed pillow reduces facial skin wrinkles. Participants and Methods: A 28-day pilot study was carried out in which fifteen healthy female volunteers aged 23 - 55 years (mean age 35. 6 ± 8.5) slept on an antiwrinkle pillow. Evaluation of facial wrinkles was conducted before commencing the study (T0), following at 14 days (T14), and at 28 days (T28) when the study ended. Wrinkle density was assessed by computerized analysis of 2D images of participants’ faces. Results: A statistically significant decrease in wrinkle density was detected while smiling around both eyes, around the right eye in a relaxed facial expression, on average in all observed facial areas, around the left periorbital area in participants who predominantly slept on their left side of the body, but not on the frontal area. Limitations: A 3D camera could be used to better visualize and analyze wrinkle density. Conclusions: Sleeping on the specially designed pillow reduces facial wrinkles.展开更多
The axisymmetric deformation of a paraboloidal membrane inflatable structure subjected to a concentrated load at its apex and a uniform internal pressure was analyzed. The wrinkle angle was obtained according to the m...The axisymmetric deformation of a paraboloidal membrane inflatable structure subjected to a concentrated load at its apex and a uniform internal pressure was analyzed. The wrinkle angle was obtained according to the membrane theory when wrinkles appeared and determined the wrinkle region. The wrinkled deformation was obtained based on the relaxed energy function. The effects of inflation pressure and concentrated loads on the wrinkle angle were analyzed and the deformation was obtained at the apex of structure. According to the numerical analysis, the shape of deformed meridians with wrinkles was obtained.展开更多
基金the National Natural Science Foundation of China(No.51972162).
文摘Graphene-based thermally conductive composites have been proposed as effective thermal management materials for cooling high-power electronic devices.However,when flexible graphene nanosheets are assembled into macroscopic thermally conductive composites,capillary forces induce shrinkage of graphene nanosheets to form wrinkles during solution-based spontaneous drying,which greatly reduces the thermal conductivity of the composites.Herein,graphene nanosheets/aramid nanofiber(GNS/ANF)composite films with high thermal conductivity were prepared by in-plane stretching of GNS/ANF composite hydrogel networks with hydrogen bonds andπ-πinteractions.The in-plane mechanical stretching eliminates graphene nanosheets wrinkles by suppressing inward shrinkage due to capillary forces during drying and achieves a high in-plane orientation of graphene nanosheets,thereby creating a fast in-plane heat transfer channel.The composite films(GNS/ANF-60 wt%)with eliminated graphene nanosheets wrinkles showed a significant increase in thermal conductivity(146 W m^(−1)K^(−1))and tensile strength(207 MPa).The combination of these excellent properties enables the GNS/ANF composite films to be effectively used for cooling flexible LED chips and smartphones,showing promising applications in the thermal management of high-power electronic devices.
基金supported by the National Natural Science Foundation of China(Grant nos.52371247,91963205,62101352,61988102 and 12274424)the National Key Research and Development Program of China(Grant nos.2019YFA0210200,2019YFA0210203,2022YFA1203500,and 2022YFA1206600).
文摘With the increasing demand for terahertz(THz)technology in security inspection,medical imaging,and flexible electronics,there is a significant need for stretchable and transparent THz electromagnetic interference(EMI)shielding materials.Existing EMI shielding materials,like opaque metals and carbon-based films,face challenges in achieving both high transparency and high shielding efficiency(SE).Here,a wrinkled structure strategy was proposed to construct ultra-thin,stretchable,and transparent terahertz shielding MXene films,which possesses both isotropous wrinkles(height about 50 nm)and periodic wrinkles(height about 500 nm).Compared to flat film,the wrinkled MXene film(8 nm)demonstrates a remarkable 36.5%increase in SE within the THz band.The wrinkled MXene film exhibits an EMI SE of 21.1 dB at the thickness of 100 nm,and an average EMI SE/t of 700 dBμm^(−1)over the 0.1-10 THz.Theoretical calculations suggest that the wrinkled structure enhances the film’s conductivity and surface plasmon resonances,resulting in an improved THz wave absorption.Additionally,the wrinkled structure enhances the MXene films’stretchability and stability.After bending and stretching(at 30%strain)cycles,the average THz transmittance of the wrinkled film is only 0.5%and 2.4%,respectively.The outstanding performances of the wrinkled MXene film make it a promising THz electromagnetic shielding materials for future smart windows and wearable electronics.
基金financially supported by the National Natural Science Foundation of China(52073302,52103311)Hunan Provincial Natural Science Foundation for Distinguished Young Scholars(No.14JJ1001).
文摘Nowadays,the increasing electromagnetic waves generated by wearable devices are becoming an emerging issue for human health,so stretchable electromagnetic interference(EMI)shielding materials are highly demanded.Elephant trunks are capable of grabbing fragile vegetation and tearing trees thanks not only to their muscles but also to their folded skins.Inspired by the wrinkled skin of the elephant trunks,herein,we propose a winkled conductive film based on single-walled carbon nanotubes(SWCNTs)for multifunctional EMI applications.The conductive film has a sandwich structure,which was prepared by coating SWCNTs on both sides of the stretched elastic latex cylindrical substrate.The shrinking-induced winkled conductive network could withstand up to 200%tensile strain.Typically,when the stretching direction is parallel to the polarization direction of the electric field,the total EMI shielding effectiveness could surprisingly increase from 38.4 to 52.7 dB at 200%tensile strain.It is mainly contributed by the increased connection of the SWCNTs.In addition,the film also has good Joule heating performance at several voltages,capable of releasing pains in injured joints.This unique property makes it possible for strain-adjustable multifunctional EMI shielding and wearable thermotherapy applications.
文摘To verify the effectiveness of digital optical 3D image analyzer EvaSKIN in the objective and quantitative evaluation of wrinkles.A total of 115 subjects were recruited,the facial images of the subjects were collected by digital optical 3D image analyzer and manual camera,the changes of crow’s feet with age were analyzed.Pictures obtained by manual photography can be directly used for observation and preliminary grading of wrinkles.However,the requirements for evaluators are high,and the results are prone to errors,which will affect the accuracy of the evaluation.Therefore,skilled raters are needed.Compared with the manual photography method,the digital optical 3D image analyzer EvaSKIN can realize three-dimensional extraction of wrinkles,and obtain the change trend of crow’s feet with age.20~30 years old,wrinkles begin to appear slowly;wrinkles will increase rapidly at the age of 30~50;The length of 50~60 year old wrinkles is basically fixed,the wrinkles develop longitudewise,gradually widen and deepen,and the area,depth and volume increase is obvious,and the skin aging condition is intensified.the digital optical 3D image analyzer EvaSKIN realizes the 3D extraction of wrinkles,quantifies the circumference,area,average depth,maximum depth and volume of wrinkles,realizes the objective and quantitative evaluation of wrinkle state,is more accurate in the measurement of wrinkles,and provides a new instrument and method for the evaluation of wrinkles.it is a perfect and supplement to the traditional evaluation methods,and to a certain extent,it helps the research and development and evaluation institutions of cosmetics to obtain more abundant and three-dimensional data support.
文摘Introduction: The need for cosmetic facial enhancement procedures with minimal down time and low risk has led to the development of methods for non-surgical skin rejuvenation. Various ablative lasers were developed, which remove the full skin surface in a controlled manner. However, the prolonged recovery and the significant risks prompted the development of fractional lasers which ablate the skin in a fractional manner, leaving untreated areas to improve healing process. In the past few years, fractional radiofrequency (RF) systems have been introduced that enable controlled skin resurfacing accompanied with dermal collagen remodeling. The new TriFractional technology from Pollogen? is designed to enable skin resurfacing and treatment of wrinkles using RF energy. The objective of the current research was to evaluate the safety and effectiveness of the novel TriFractional technology using the TriFractional applicator (A3F) for micro-ablative skin resurfacing and the treatment of wrinkles and acne scars. Methods: Healthy volunteers consented to undergo TriFractional treatments for various aesthetic indications. In addition, in-vivo and ex-vivo histologycal results showing immediate and long term effects of the TriFractional technology were obtained. A portion of the subjects underwent the complete TriLipo MedTM Procedure which includes 2 TriFractional treatments spaced one month apart, with 2 TriLipo RF + Dynamic Muscle Activation (DMA) face treatments two weeks after each TriFractional treatment. Results: Subjects experienced an improvement of wrinkles, skin texture and acne scars along with facial contouring. No significant adverse effects were detected post-treatment. Histology findings demonstrated immediate and long term TriFractional effects on both epidermal and dermal skin layers. Conclusions: TriFractional is a promising technology for skin resurfacing, treatment of wrinkles and improvement of additional aesthetic indications such as acne scars. The TriLipo MEDTM procedure is a unique combination approach for total facial rejuvenation and contouring.
文摘The minimal clinically important difference(MCID)represents a pivotal metric in bridging the gap between statistical significance and clinical relevance,addressing the direct impact of medical interventions from the patient's perspective.This comprehensive review analyzes the evolution,applications,and challenges of MCID across medical specialties,emphasizing its necessity in ensuring that clinical outcomes not only demonstrate statistical significance but also offer genuine clinical utility that aligns with patient expectations and needs.We discuss the evolution of MCID since its inception in the 1980s,its current applications across various medical specialties,and the methodologies used in its calculation,highlighting both anchor-based and distribution-based approaches.Furthermore,the paper delves into the challenges associated with the application of MCID,such as methodological variability and the interpretation difficulties that arise in clinical settings.Recommendations for the future include standardizing MCID calculation methods,enhancing patient involvement in setting MCID thresholds,and extending research to incorporate diverse global perspectives.These steps are critical to refining the role of MCID in patient-centered healthcare,addressing existing gaps in methodology and interpretation,and ensuring that medical interventions lead to significant,patient-perceived improvements.
文摘Machine learning(ML)is a type of artificial intelligence that assists computers in the acquisition of knowledge through data analysis,thus creating machines that can complete tasks otherwise requiring human intelligence.Among its various applications,it has proven groundbreaking in healthcare as well,both in clinical practice and research.In this editorial,we succinctly introduce ML applications and present a study,featured in the latest issue of the World Journal of Clinical Cases.The authors of this study conducted an analysis using both multiple linear regression(MLR)and ML methods to investigate the significant factors that may impact the estimated glomerular filtration rate in healthy women with and without non-alcoholic fatty liver disease(NAFLD).Their results implicated age as the most important determining factor in both groups,followed by lactic dehydrogenase,uric acid,forced expiratory volume in one second,and albumin.In addition,for the NAFLD-group,the 5th and 6th most important impact factors were thyroid-stimulating hormone and systolic blood pressure,as compared to plasma calcium and body fat for the NAFLD+group.However,the study's distinctive contribution lies in its adoption of ML methodologies,showcasing their superiority over traditional statistical approaches(herein MLR),thereby highlighting the potential of ML to represent an invaluable advanced adjunct tool in clinical practice and research.
基金supported partly by the National Natural Science Foundation of China,No.82071332the Chongqing Natural Science Foundation Joint Fund for Innovation and Development,No.CSTB2023NSCQ-LZX0041 (both to ZG)。
文摘Some studies have confirmed the neuroprotective effect of remote ischemic conditioning against stroke. Although numerous animal researches have shown that the neuroprotective effect of remote ischemic conditioning may be related to neuroinflammation, cellular immunity, apoptosis, and autophagy, the exact underlying molecular mechanisms are unclear. This review summarizes the current status of different types of remote ischemic conditioning methods in animal and clinical studies and analyzes their commonalities and differences in neuroprotective mechanisms and signaling pathways. Remote ischemic conditioning has emerged as a potential therapeutic approach for improving stroke-induced brain injury owing to its simplicity, non-invasiveness, safety, and patient tolerability. Different forms of remote ischemic conditioning exhibit distinct intervention patterns, timing, and application range. Mechanistically, remote ischemic conditioning can exert neuroprotective effects by activating the Notch1/phosphatidylinositol 3-kinase/Akt signaling pathway, improving cerebral perfusion, suppressing neuroinflammation, inhibiting cell apoptosis, activating autophagy, and promoting neural regeneration. While remote ischemic conditioning has shown potential in improving stroke outcomes, its full clinical translation has not yet been achieved.
文摘Based on the deformation characteristic of regular polygonal box stamped parts and the superfluous triangle material wrinkle model,the criterion of regular polygonal box stamped parts without wrinkle was deduced and used to predict and control the wrinkle limit.According to the fracture model,the criterion of regular polygonal box stamped parts without fracture was deduced and used to predict and control the fracture limit.Combining the criterion for stamping without wrinkle with that without fracture,the stamping criterion of regular polygonal box stamped parts was obtained to predict and control the stamping limit.Taken the stainless steel0Cr18Ni9(SUS304)sheet and the square box stamped part as examples,the limit diagram was given to predict and control the wrinkle,fracture and stamping limits.It is suitable for the deep drawing without flange,the deep drawing and stretching combined forming with flange and the rigid punch stretching of plane blank.The limit deep-drawing coefficient and the minimum deep-drawing coefficient can be determined,and the appropriate BHF(blank holder force)and the deep-drawing force can be chosen.These provide a reference for the technology planning,the die and mold design and the equipment determination,and a new criterion evaluating sheet stamping formability,which predicts and controls the stamping process,can be applied to the deep drawing under constant or variable BHF conditions.
文摘It is generally recognized that Caucasians and Asians have different skin aging features. The aim of this study was to develop a facial wrinkle grading scale for Chinese women. Standard photographs were taken of 242 Chinese women. Six sets of 0 to 9 wrinkle scales with reference photographs and descriptions were selected, including grading scales for resting and hyperkinetic crow's feet, frontalis lines, glabellar frown lines, and nasolabial folds. To identify the scale by objective quantitative measurement, skin surface measurements from the Visioscan~ VC98 were used. To test the reliability and validity of our wrinkle scale, a multi-rater consensus method was used. A double-blind, randomized, vehicle-controlled 12-week study was conducted to use this clinical photo-score to evaluate the efficacy and safety of Centella triterpenes cream~ in treating crow's feet. A newly developed 10-point photographic and descriptive scale emerged from this study. The final atlas of these photographs contained a total of 6 sets with 10 pictures each. From 0 to 9, surface evaluation of smoothness (SEsm) parametric measurements decreased progressively, indicating that the scale increased inversely. Weighted kappa coefficients for intra-assessor were between 0.75-0.87. The overall Kendall's coefficient is 0.86 on the first rating and 0.87 on the second rating. Thirty- six volunteers were recruited and 35 subjects completed a 12-week trial. Clinical photo-score by investigator showed a significant difference (P 〈 0.05) between the treatment side and control side after 4 weeks. Use of these scales in clinical settings to evaluate facial wrinkles in Asians individuals is recommended.
文摘An effective model(image to wrinkle, ITW) for garment fitting evaluation is presented. The proposed model is to improve the accuracy of garment fitting evaluation based on dressing image. The ITW model is an objective evaluation model of fitting based on the wrinkle index of dressing image. The ITW model consists of two main steps, the gray curve-fitting(GCF) threshold segmentation algorithm and Canny edge detection algorithm. In the ITW model, three types of wrinkle trends are defined. And the network dressing image is evaluated and simulated by three quantitative indexes: wrinkle number, wrinkle regularity and wrinkle unevenness. Finally, the fitness of three kinds of dress effects(tight, fit and loose) is quantified by objective fitting evaluation model.
文摘Wrinkling patterns and the rules of wrinkling formation and expansion were analyzed in this paper. Direct disturbing method,a numerical method for membrane wrinkling analysis,was established based on finite element programme. The experimental results using photogrammetric procedure were compared with numerical analysis results. It is shown that the reasonable wrinkling deformation can be obtained by rational mesh density and timely removes the initial flaw during analysis. Wrinkles firstly appear on the left and right sides then extend to the membrane center,and the wrinkling amplitude increases with shear displacement. Results from both of the experiments and numerical analysis have a good agreement,which verifies the rationality of the numerical analysis method.
基金This project was financially supported by the Research Grants Council(GRF Projects:16229216,16209917,16205517)the Innovation and Technology Commission(ITS/012/19)of Hong Kong SAR.
文摘Flexible multidirectional strain sensors are crucial to accurately determining the complex strain states involved in emerging sensing applications.Although considerable efforts have been made to construct anisotropic structures for improved selective sensing capabilities,existing anisotropic sensors suffer from a trade-off between high sensitivity and high stretchability with acceptable linearity.Here,an ultrasensitive,highly selective multidirectional sensor is developed by rational design of functionally different anisotropic layers.The bilayer sensor consists of an aligned carbon nanotube(CNT)array assembled on top of a periodically wrinkled and cracked CNT-graphene oxide film.The transversely aligned CNT layer bridge the underlying longitudinal microcracks to effectively discourage their propagation even when highly stretched,leading to superior sensitivity with a gauge factor of 287.6 across a broad linear working range of up to 100%strain.The wrinkles generated through a pre-straining/releasing routine in the direction transverse to CNT alignment is responsible for exceptional selectivity of 6.3,to the benefit of accurate detection of loading directions by the multidirectional sensor.This work proposes a unique approach to leveraging the inherent merits of two cross-influential anisotropic structures to resolve the trade-off among sensitivity,selectivity,and stretchability,demonstrating promising applications in full-range,multi-axis human motion detection for wearable electronics and smart robotics.
文摘The prediction and control criterion of both the wrinkle limit and fracture limit on the cylindrical cup deep-drawing are given, and the prediction and control diagram of both the wrinkle limit and fracture limit are also given. The results show that it is suitable for no-flange cylindrical cup deep-drawing, narrow-flange cylindrical cup deep-drawing, wide-flange cylindrical cup deep-drawing/expanding compound forming and rigid punch expanding forming.
文摘hased on both the wrinkle model and fracturc model, the wrinkle critical tangent pressure and the fractureon critical radial tensile stress are calculated respectively. The maximum tangent pressure formula in the flange deformation zone and the maximum radial tensile stress formula in the cylinder-wall pass force zone are given, and both theno-wrinkle limitl criterion and no-fracture limit criterion are put froward. The prediction and control criterion anddiagram of both the wrinkle limit and fracture limit on cylindrical cup deep-drawing, the most suitable formingzone and the limit deep-drawing coefficient are obtained. Comparing with present experience formulae and actualproduct's production, this prediction and control are quite accurate.
文摘Constituting the reasonable control models of the wrinkle limit blank holder forces is the sticking point of the processes of the deep drawing with variable blank-holder forces, especially in the square-box forming. To begin with, a mode of segmenting flange of the square-box into eight zones is put forward according to the fact that the uniformity of flange deforming can be improved by control-ling segment blank-holders. Considering the integral influence of shear stress, a new concept, strain relaxation factor is defined. Hereby, the law of distribution of stress and stain in the deforming flange of square-box is achieved. Then based on these mechanical analysis models and the energy principle, the wrinkling flexivity functions of the straight flange and the circle flange are given, and the corresponding formulae of wrinkling limit blank-holder force in these two situations are also educed. In these processes, ply-anisotropy, strain hardening, thickness and friction are considered. In the end, a calculating example is designed to validate the rationality of the formulae of wrinkling limit blank-holder force, at the same time, the influences of the ply-anisotropy exponent and the strain hardening exponent on the wrinkle limit blank holder forces are also analyzed.
文摘In this paper, the principle of multi-point forming (MPF) technique is presented. One of the most serious defects, wrinkling, during the multi-point forming process of a shallow rectangle cup is discussed by means of numerical simulation on the shallow rectangle cup forming process. The effects of thickness, material of sheet metal and the pressure of the blank holder are investigated. Based on the simulation results, the reasons and control methods of wrinkling are pointed out. Moreover, the experiment on the multi-point die forming of the shallow rectangle cup by the MPF machine is done to validate the efficiency of the numerical simulation, and the result proves that the application of an elastic cushion in the forming can restrain wrinkling efficiently.
基金supported by the National Natural Science Foundation of China (10902027)the Specialized Research Fund for the Doctoral Program of Higher Education of China (200802131046)+1 种基金Aeronautical Science Foundation of China (2010ZA77001)the Fundamental Research Funds for the Central Universities(HIT.NSRIF.201156)
文摘Wrinkling analysis of a rectangular membrane with a single crease under shearing is performed to understand the wrinkle-crease interaction behaviors. The crease is considered by introducing the residual stresses from creasing and the effective modulus into the baseline configuration with assumed circular cross-sectional crease geometry. The wrinkling analysis of the creased membrane is then performed by using the direct perturb-force (DP) simulation technique which is based on our modified displacement components (MDC) method. Results reveal that the crease may influence the stress transfer path in the membrane and further change the wrinkling direction. The crease appears to improve the bending stiffness of the membrane which has an effective resistance on the wrinkling evolution. The effects of the crease orientation on wrinkle-crease interaction are studied toward the end of this paper. The results show that the wrinkling amplitude, wavelength, and direction increase as the crease orientation increases, and the wrinkling number decreases with the increasing crease orientation. These results will be of great benefit to the analysis and the control of the wrinkles in the membrane structures.
文摘Background: A special pillow was designed to redistribute mechanical stress during sleeping in order to slow down the formation of facial skin wrinkles. Objective: To investigate whether sleeping on a specially designed pillow reduces facial skin wrinkles. Participants and Methods: A 28-day pilot study was carried out in which fifteen healthy female volunteers aged 23 - 55 years (mean age 35. 6 ± 8.5) slept on an antiwrinkle pillow. Evaluation of facial wrinkles was conducted before commencing the study (T0), following at 14 days (T14), and at 28 days (T28) when the study ended. Wrinkle density was assessed by computerized analysis of 2D images of participants’ faces. Results: A statistically significant decrease in wrinkle density was detected while smiling around both eyes, around the right eye in a relaxed facial expression, on average in all observed facial areas, around the left periorbital area in participants who predominantly slept on their left side of the body, but not on the frontal area. Limitations: A 3D camera could be used to better visualize and analyze wrinkle density. Conclusions: Sleeping on the specially designed pillow reduces facial wrinkles.
基金Sponsored by the Development Program for Outstanding Young Teachers in Harbin Institute of Technology(Grant No.HITQNJS.2008.004)the China Postdoctoral Science Foundation (Grant No.20070420163)Special Fund for Innovation Talents of Science and Technology in Harbin(Grant No.2008RFQXG057)
文摘The axisymmetric deformation of a paraboloidal membrane inflatable structure subjected to a concentrated load at its apex and a uniform internal pressure was analyzed. The wrinkle angle was obtained according to the membrane theory when wrinkles appeared and determined the wrinkle region. The wrinkled deformation was obtained based on the relaxed energy function. The effects of inflation pressure and concentrated loads on the wrinkle angle were analyzed and the deformation was obtained at the apex of structure. According to the numerical analysis, the shape of deformed meridians with wrinkles was obtained.