We presented a clock synchronization method that contained a clock adjusting algorithm and a frequency compensated clock to achieve precise synchronization among distributed clocks based on IEEE 1588 protocol.Further,...We presented a clock synchronization method that contained a clock adjusting algorithm and a frequency compensated clock to achieve precise synchronization among distributed clocks based on IEEE 1588 protocol.Further,we presented its application on Ethernet and implementation of the frequency compensated clock in a field programmable gate array(FPGA) as experiments.The results indicate that this method can support sub-microsecond synchronization with inexpensive standard crystal oscillators.展开更多
We develop a permanent-magnet Zeeman slower with adjustable magnets along the longitudinal and radial directions.Produced by four arrays of cylindrical magnets, the longitudinal magnetic field in the slower is tunable...We develop a permanent-magnet Zeeman slower with adjustable magnets along the longitudinal and radial directions.Produced by four arrays of cylindrical magnets, the longitudinal magnetic field in the slower is tunable if relevant parameters vary, for example, laser detuning or intensity. The proposed Zeeman slower can be reconfigured for Sr atoms. Additionally,we demonstrate that the residual magnetic field produced by the permanent magnets in the magneto-optical trap region can be as small as 0.5 Gs.展开更多
基金the Natural Science Foundation of Hubei (No.2006ABA065)
文摘We presented a clock synchronization method that contained a clock adjusting algorithm and a frequency compensated clock to achieve precise synchronization among distributed clocks based on IEEE 1588 protocol.Further,we presented its application on Ethernet and implementation of the frequency compensated clock in a field programmable gate array(FPGA) as experiments.The results indicate that this method can support sub-microsecond synchronization with inexpensive standard crystal oscillators.
基金Project supported by the National Key Basic Research and Development Program of China(Grant Nos.2012CB821302 and 2016YFA0302103)the National Natural Science Foundation of China(Grant No.11134003)+1 种基金the National High Technology Research and Development Program of China(Grant No.2014AA123401)the Shanghai Excellent Academic Leaders Program of China(Grant No.12XD1402400)
文摘We develop a permanent-magnet Zeeman slower with adjustable magnets along the longitudinal and radial directions.Produced by four arrays of cylindrical magnets, the longitudinal magnetic field in the slower is tunable if relevant parameters vary, for example, laser detuning or intensity. The proposed Zeeman slower can be reconfigured for Sr atoms. Additionally,we demonstrate that the residual magnetic field produced by the permanent magnets in the magneto-optical trap region can be as small as 0.5 Gs.