In this paper, we investigate the perturbation problem for the Moore-Penrose bounded quasi-linear projection generalized inverses of a closed linear operaters in Banach space. By the method of the perturbation analysi...In this paper, we investigate the perturbation problem for the Moore-Penrose bounded quasi-linear projection generalized inverses of a closed linear operaters in Banach space. By the method of the perturbation analysis of bounded quasi-linear operators, we obtain an explicit perturbation theorem and error estimates for the Moore-Penrose bounded quasi-linear generalized inverse of closed linear operator under the T-bounded perturbation, which not only extend some known results on the perturbation of the oblique projection generalized inverse of closed linear operators, but also extend some known results on the perturbation of the Moore-Penrose metric generalized inverse of bounded linear operators in Banach spaces.展开更多
基金Supported by National Nature Science Foundation of China(Grant No.11471091)
文摘In this paper, we investigate the perturbation problem for the Moore-Penrose bounded quasi-linear projection generalized inverses of a closed linear operaters in Banach space. By the method of the perturbation analysis of bounded quasi-linear operators, we obtain an explicit perturbation theorem and error estimates for the Moore-Penrose bounded quasi-linear generalized inverse of closed linear operator under the T-bounded perturbation, which not only extend some known results on the perturbation of the oblique projection generalized inverse of closed linear operators, but also extend some known results on the perturbation of the Moore-Penrose metric generalized inverse of bounded linear operators in Banach spaces.