In the areas without terrestrial communication infrastructures,unmanned aerial vehicles(UAVs)can be utilized to serve field robots for mission-critical tasks.For this purpose,UAVs can be equipped with sensing,communic...In the areas without terrestrial communication infrastructures,unmanned aerial vehicles(UAVs)can be utilized to serve field robots for mission-critical tasks.For this purpose,UAVs can be equipped with sensing,communication,and computing modules to support various requirements of robots.In the task process,different modules assist the robots to perform tasks in a closed-loop way,which is referred to as a sensing-communication-computing-control(SC3)loop.In this work,we investigate a UAV-aided system containing multiple SC^(3)loops,which leverages non-orthogonal multiple access(NOMA)for efficient resource sharing.We describe and compare three different modelling levels for the SC^(3)loop.Based on the entropy SC^(3)loop model,a sum linear quadratic regulator(LQR)control cost minimization problem is formulated by optimizing the communication power.Further for the assure-to-be-stable case,we show that the original problem can be approximated by a modified user fairness problem,and accordingly gain more insights into the optimal solutions.Simulation results demonstrate the performance gain of using NOMA in such task-oriented systems,as well as the superiority of our proposed closed-loop-oriented design.展开更多
In order to effectively control the working state of the gyroscope in drive mode, the drive characteristics of the micro electromechanical system (MEMS) gyroscope are analyzed in principle. A novel drive circuit for...In order to effectively control the working state of the gyroscope in drive mode, the drive characteristics of the micro electromechanical system (MEMS) gyroscope are analyzed in principle. A novel drive circuit for the MEMS gyroscope in digital closed-loop control is proposed, which utilizes a digital phase-locked loop (PLL) in frequency control and an automatic gain control (AGC) method in amplitude control. A digital processing circuit with a field programmable gate array (FPGA) is designed and the experiments are carried out. The results indicate that when the temperature changes, the drive frequency can automatically track the resonant frequency of gyroscope in drive mode and that of the oscillating amplitude holds at a set value. And at room temperature, the relative deviation of the drive frequency is 0.624 ×10^-6 and the oscillating amplitude is 8.0 ×10^-6, which are 0. 094% and 18. 39% of the analog control program, respectively. Therefore, the control solution of the digital PLL in frequency and the AGC in amplitude is feasible.展开更多
A dynamics-based adaptive control approach is proposed for a planar dual-arm space robot in the presence of closed-loop constraints and uncertain inertial parameters of the payload. The controller is capable of contro...A dynamics-based adaptive control approach is proposed for a planar dual-arm space robot in the presence of closed-loop constraints and uncertain inertial parameters of the payload. The controller is capable of controlling the po- sition and attitude of both the satellite base and the payload grasped by the manipulator end effectors. The equations of motion in reduced-order form for the constrained system are derived by incorporating the constraint equations in terms of accelerations into Kane's equations of the unconstrained system. Model analysis shows that the resulting equations perfectly meet the requirement of adaptive controller design. Consequently, by using an indirect approach, an adaptive control scheme is proposed to accomplish position/attitude trajectory tracking control with the uncertain parameters be- ing estimated on-line. The actuator redundancy due to the closed-loop constraints is utilized to minimize a weighted norm of the joint torques. Global asymptotic stability is proven by using Lyapunov's method, and simulation results are also presented to demonstrate the effectiveness of the proposed approach.展开更多
To improve the penetrating ability and the welding quality of keyhole plasma arc welding, a novel penetration closed loop control system was established. In the system, welding current and plasma gas flow rate were se...To improve the penetrating ability and the welding quality of keyhole plasma arc welding, a novel penetration closed loop control system was established. In the system, welding current and plasma gas flow rate were selected as adjusting variables. The wavelet method was used to detect penetration status from welding arc voltage in real time. The control strategy of one keyhole per pulse was adapted to fulfill stable and high quality welding process. Experimental results show that the developed system can apparently increase the penetrating force of plasma arc and keyhole plasma arc welding is realized successfully in stainless steel with 10 mm in thickness. Moreover, the disturbances of gradual change and break change from 3 mm to 6 mm in thickness are come over due to the good response property of the developed system.展开更多
Objective: To evaluate the efficiency of an implanted chip system for the control of heart rate (HR). Methods: The HR was recorded in six conscious Sprague-Dawley (SD) rats. An implanted chip system was designed...Objective: To evaluate the efficiency of an implanted chip system for the control of heart rate (HR). Methods: The HR was recorded in six conscious Sprague-Dawley (SD) rats. An implanted chip system was designed to regulate the HR by stimulating the right cervical vagus nerve according to the feedback of real time HR. Each rat was subjected to 30-min regulation and 30-min recovery. The change of HR during the regulation period was compared with the control. The ECG was recorded during the experiment for 24 h. Results: The ECG signals were successfully recorded during the experiment. The HR was significantly decreased during the period of regulation compared with control (-79.3 ± 34.5, P 〈 0.01, n = 6) and then recovered to normal after regulation. Conclusion: The described implanted chip system can regulate the HR to a designated set point.展开更多
An open-plus-closed-loop (OPCL) control problem for the chaotic motion of a 3D rigid pendulum subjected to a constant gravitationM force is studied. The 3D rigid pendulum is assumed to be consist of a rigid body sup...An open-plus-closed-loop (OPCL) control problem for the chaotic motion of a 3D rigid pendulum subjected to a constant gravitationM force is studied. The 3D rigid pendulum is assumed to be consist of a rigid body supported by a fixed and frictionless pivot with three rotational degrees. In order to avoid the singular phenomenon of Euler's angular velocity equation, the quaternion kinematic equation is used to describe the motion of the 3D rigid pendulum. An OPCL controller for chaotic motion of a 3D rigid pendulum at equilibrium position is designed. This OPCL controller contains two parts: the open-loop part to construct an ideal trajectory and the closed-loop part to stabilize the 3D rigid pendulum. Simulation results show that the controller is effective and efficient.展开更多
A type of single neuron adaptive PID regulator with auto-tuning gain is proposed and applied to the work control of fans, waterpumps and air-pressers etc. in Handan Iron & Steel Compel China. The robusthess of ind...A type of single neuron adaptive PID regulator with auto-tuning gain is proposed and applied to the work control of fans, waterpumps and air-pressers etc. in Handan Iron & Steel Compel China. The robusthess of induStrial parameter closed-loop process controlsystems is improved, and the work quality of the systems bettered.展开更多
In order to study the factors that influence the air fuel ratio(A/F), the amplitude and frequency of A/F fluctuation, to reform the control strategy, and to improve the efficiency of three way catalyst(TWC), a model...In order to study the factors that influence the air fuel ratio(A/F), the amplitude and frequency of A/F fluctuation, to reform the control strategy, and to improve the efficiency of three way catalyst(TWC), a model of closed loop control system including the engine, air fuel mixing and transportation, oxygen sensor and controller, etc., is developed. Various factors that influence the A/F control are studied by simulation. The simulation results show that the reference voltage of oxygen sensor will influence the mean value of A/F ratio, the controller parameters will influence the amplitude of A/F fluctuation, and the operating conditions of the engine determine the frequency of A/F fluctuations, the amplitude of A/F fluctuation can be reduced to within demanded values by logical selection of the signal acquisition method and controller parameters. Higher A/F fluctuation frequency under high speed and load can be reduced through software delay in the controller. The A/F closed loop control system based on the simulation results, accompanied with a rare earth element TWC, gives a better efficiency of conversion against harmful emissions.展开更多
In order to improve the steady state performance,dynamic response and power factor of traditional power factor correction(PFC)digital control method and reduce the harmonic distortion of input current,a double closed ...In order to improve the steady state performance,dynamic response and power factor of traditional power factor correction(PFC)digital control method and reduce the harmonic distortion of input current,a double closed loop active power factorcorrection(APFC)control method with feed-forward is proposed.Firstly,the small signal model of Boost PFC control systemis built and the system transfer function is deduced,and then the parameters of the main device with Boost topology is estimated.By means of the feed-forward,the system can quickly respond to the change in input voltage.Furthermore,the use ofvoltage loop and current loop can achieve input current and output voltage regulation Simulink modeling shows that this methodcan effectively control the output voltage in case of input voltage largely fluctuating,improve the system dynamic response abilityand input power factor,and reduce the input current harmonic distortion展开更多
In this paper, we propose a smart step closed-loop power control (SSPC) algorithm and a base station assignment method based on minimizing the transmitter power (BSA-MTP) technique in a direct sequence-code division m...In this paper, we propose a smart step closed-loop power control (SSPC) algorithm and a base station assignment method based on minimizing the transmitter power (BSA-MTP) technique in a direct sequence-code division multiple access (DS-CDMA) receiver with frequency-selective Rayleigh fading. This receiver consists of three stages. In the first stage, with constrained least mean squared (CLMS) algorithm, the desired users’ signal in an arbitrary path is passed and the inter-path interference (IPI) is reduced in other paths in each RAKE finger. Also in this stage, the multiple access interference (MAI) from other users is reduced. Thus, the matched filter (MF) can use for more reduction of the IPI and MAI in each RAKE finger in the second stage. Also in the third stage, the output signals from the matched filters are combined according to the conventional maximal ratio combining (MRC) principle and then are fed into the decision circuit of the desired user. The simulation results indicate that the SSPC algorithm and the BSA-MTP technique can significantly reduce the network bit error rate (BER) compared to the other methods. Also, we observe that significant savings in total transmit power (TTP) are possible with our methods.展开更多
There have been a large number of accidents at level crossings of railways and this has been considered to be a significant issue to be solved for the realization of safe and stable railway transport.A conventional le...There have been a large number of accidents at level crossings of railways and this has been considered to be a significant issue to be solved for the realization of safe and stable railway transport.A conventional level crossing control system is characterized by the use of two types of electronic train detectors;one detects a train approaching to a level crossing section and the other then detects the train having left the level crossing.By contrast,closed-loop level crossing control systems in which level crossing control equipment and train-borne equipment communicate with each other have been advocated and are expected to serve as an effective solution to the abovementioned issue.This paper describes the following three types of closed-loop level crossing control systems:decentralized level crossing control system,fully-centralized comprehensive level crossing control system and fully-centralized individual level crossing control system.This paper then assesses the safety of these systems in comparison to the conventional level crossing control system.For the purpose of the assessment of their safety,a new accident analysis model called STAMP(systems theoretic accident model and processes)that is suitable for software intensive systems is used to clarify the advantage of the proposed three types of level crossing control systems in terms of safety.展开更多
According to the soft-switching pulsed SAW (Submerged arc weld) weld power supply based on the double closed-loop constant current control mode, a small signal mathematic model of main circuit of soft-switching SAW in...According to the soft-switching pulsed SAW (Submerged arc weld) weld power supply based on the double closed-loop constant current control mode, a small signal mathematic model of main circuit of soft-switching SAW inverter was established by applying the method of three-terminal switching device modeling method, and the math-ematic model of double closed-loop phase-shift control system circuit was established by applying the method of state-space averaging method. Dynamic performance of the inverter was analyzed on base of the established math-ematic model, and the tested wave of dynamic performance was shown by experimentation. Research and experimentation show that relation between structure of the power source circuit and dynamic performance of the controlling system can be announced by the established mathematic model, which provides development of power supply and optimized design of controlling parameter with theoretical guidance.展开更多
We study the entanglement of dressed atom and its spontaneous emission in a three-level A-type closed-loop atomic system in a multi-photon resonance condition and beyond it. It is shown that the von Neumann entropy in...We study the entanglement of dressed atom and its spontaneous emission in a three-level A-type closed-loop atomic system in a multi-photon resonance condition and beyond it. It is shown that the von Neumann entropy in such a system is phase-dependent, and it can be controlled by either the intensity or relative phase of applied fields. It is demonstrated that for the special case of the Rabi frequency of applied fields, the system is disentangled. In addition, we take into account the effect of Doppler broadening on the entanglement and it is found that a suitable choice of laser propagation direction allows us to obtain the steady state degree of entanglement (DEM) even in the presence of the Doppler effect.展开更多
This paper explores the model reference adaptive control problem for a class of switched linear systems under arbitrary switching with no need for the measurability of the system state.Based on the state of reference ...This paper explores the model reference adaptive control problem for a class of switched linear systems under arbitrary switching with no need for the measurability of the system state.Based on the state of reference model and the measurable output error, adaptive laws and controllers are designed for switched systems.Each subsystem may have its individual reference model and controller, which increases the design flexibility.The introduction of the closed-loop reference model is to get a better transient performance of the whole switched systems.A numerical example is provided to verify the effectiveness of the main results.展开更多
The interference reduction capability of antenna arrays and the power control algorithms have been considered separately as means to decrease the interference in wireless communication networks. In this paper, we prop...The interference reduction capability of antenna arrays and the power control algorithms have been considered separately as means to decrease the interference in wireless communication networks. In this paper, we propose smart step closed-loop power control (SSPC) algorithm in wireless networks in a 2D urban environment with constrained least mean squared (CLMS) algorithm. This algorithm is capable of efficiently adapting according to the environment and able to permanently maintain the chosen frequency response in the look direction while minimizing the output power of the array. Also, we present switched-beam (SB) technique for enhancing signal to interference plus noise ratio (SINR) in wireless networks. Also, we study an analytical approach for the evaluation of the impact of power control error (PCE) on wireless networks in a 2D urban environment. The simulation results indicate that the convergence speed of the SSPC algorithm is faster than other algorithms. Also, we observe that significant saving in total transmit power (TTP) are possible with our proposed algorithm. Finally, we discuss three parameters of the PCE, number of antenna elements, and path-loss exponent and their effects on capacity of the system via some computer simulations.展开更多
A four-level atomic system with a closed interaction loop connected by two coherent driving fields and a microwave field is investigated. The results show that inversionless gain can be achieved on a higher frequency ...A four-level atomic system with a closed interaction loop connected by two coherent driving fields and a microwave field is investigated. The results show that inversionless gain can be achieved on a higher frequency transition outside the closed interaction loop, and the gain behaviour can be modulated by the phase of the closed loop as well as the amplitude of the microwave field. The phase sensitivity property in such a scheme is similar to that in an analogous configuration with spontaneously generated coherence, but it is beyond the rigorous condition of near-degenerate levels with non-orthogonal dipole moments. Therefore this scheme is much more convenient in experimental realization.展开更多
The existing kinematic parameter calibration method cannot further improve the absolute positioning accuracy of the robot due to the uncertainty of positioning error caused by robot joint backlash.In view of this prob...The existing kinematic parameter calibration method cannot further improve the absolute positioning accuracy of the robot due to the uncertainty of positioning error caused by robot joint backlash.In view of this problem,a closed‑loop feedback accuracy compensation method for robot joints was proposed.Firstly,a Chebyshev polynomial error estimation model was established which took geometric error and non‑geometric error into account.In addition,the absolute linear grating scale was installed at each joint of the robot and the positioning error of the robot end was mapped to the joint angle.And the joint angle corrected value was obtained.Furthermore,the closed‑loop feedback of robot joints was established to realize the online correction of the positioning error.Finally,an experiment on the KUKA KR210 industrial robot was conducted to demonstrate the effectiveness of the method.The result shows that the maximum absolute positioning error of the robot is reduced by 75%from 0.76 mm to 0.19 mm.This method can compensate the robot joint backlash effectively and further improve the absolute positioning accuracy of the robot.展开更多
基金supported in part by the National Key Research and Development Program of China under Grant 2020YFA0711301in part by the National Natural Science Foundation of China under Grant 62341110, Grant U22A2002, and Grant 62025110in part by the Suzhou Science and Technology Project
文摘In the areas without terrestrial communication infrastructures,unmanned aerial vehicles(UAVs)can be utilized to serve field robots for mission-critical tasks.For this purpose,UAVs can be equipped with sensing,communication,and computing modules to support various requirements of robots.In the task process,different modules assist the robots to perform tasks in a closed-loop way,which is referred to as a sensing-communication-computing-control(SC3)loop.In this work,we investigate a UAV-aided system containing multiple SC^(3)loops,which leverages non-orthogonal multiple access(NOMA)for efficient resource sharing.We describe and compare three different modelling levels for the SC^(3)loop.Based on the entropy SC^(3)loop model,a sum linear quadratic regulator(LQR)control cost minimization problem is formulated by optimizing the communication power.Further for the assure-to-be-stable case,we show that the original problem can be approximated by a modified user fairness problem,and accordingly gain more insights into the optimal solutions.Simulation results demonstrate the performance gain of using NOMA in such task-oriented systems,as well as the superiority of our proposed closed-loop-oriented design.
基金The National Natural Science Foundation of China(No. 60974116 )the Research Fund of Aeronautics Science (No.20090869007)Specialized Research Fund for the Doctoral Program of Higher Education (No. 200902861063)
文摘In order to effectively control the working state of the gyroscope in drive mode, the drive characteristics of the micro electromechanical system (MEMS) gyroscope are analyzed in principle. A novel drive circuit for the MEMS gyroscope in digital closed-loop control is proposed, which utilizes a digital phase-locked loop (PLL) in frequency control and an automatic gain control (AGC) method in amplitude control. A digital processing circuit with a field programmable gate array (FPGA) is designed and the experiments are carried out. The results indicate that when the temperature changes, the drive frequency can automatically track the resonant frequency of gyroscope in drive mode and that of the oscillating amplitude holds at a set value. And at room temperature, the relative deviation of the drive frequency is 0.624 ×10^-6 and the oscillating amplitude is 8.0 ×10^-6, which are 0. 094% and 18. 39% of the analog control program, respectively. Therefore, the control solution of the digital PLL in frequency and the AGC in amplitude is feasible.
基金supported by the National Natural Science Foundation of China(11272027)
文摘A dynamics-based adaptive control approach is proposed for a planar dual-arm space robot in the presence of closed-loop constraints and uncertain inertial parameters of the payload. The controller is capable of controlling the po- sition and attitude of both the satellite base and the payload grasped by the manipulator end effectors. The equations of motion in reduced-order form for the constrained system are derived by incorporating the constraint equations in terms of accelerations into Kane's equations of the unconstrained system. Model analysis shows that the resulting equations perfectly meet the requirement of adaptive controller design. Consequently, by using an indirect approach, an adaptive control scheme is proposed to accomplish position/attitude trajectory tracking control with the uncertain parameters be- ing estimated on-line. The actuator redundancy due to the closed-loop constraints is utilized to minimize a weighted norm of the joint torques. Global asymptotic stability is proven by using Lyapunov's method, and simulation results are also presented to demonstrate the effectiveness of the proposed approach.
文摘To improve the penetrating ability and the welding quality of keyhole plasma arc welding, a novel penetration closed loop control system was established. In the system, welding current and plasma gas flow rate were selected as adjusting variables. The wavelet method was used to detect penetration status from welding arc voltage in real time. The control strategy of one keyhole per pulse was adapted to fulfill stable and high quality welding process. Experimental results show that the developed system can apparently increase the penetrating force of plasma arc and keyhole plasma arc welding is realized successfully in stainless steel with 10 mm in thickness. Moreover, the disturbances of gradual change and break change from 3 mm to 6 mm in thickness are come over due to the good response property of the developed system.
基金supported by grant from National Nature Science Found (30670767)
文摘Objective: To evaluate the efficiency of an implanted chip system for the control of heart rate (HR). Methods: The HR was recorded in six conscious Sprague-Dawley (SD) rats. An implanted chip system was designed to regulate the HR by stimulating the right cervical vagus nerve according to the feedback of real time HR. Each rat was subjected to 30-min regulation and 30-min recovery. The change of HR during the regulation period was compared with the control. The ECG was recorded during the experiment for 24 h. Results: The ECG signals were successfully recorded during the experiment. The HR was significantly decreased during the period of regulation compared with control (-79.3 ± 34.5, P 〈 0.01, n = 6) and then recovered to normal after regulation. Conclusion: The described implanted chip system can regulate the HR to a designated set point.
基金supported by the National Natural Science Foundation of China(No.11072038)the Municipal Key Programs of Natural Science Foundation of Beijing(No.KZ201110772039)
文摘An open-plus-closed-loop (OPCL) control problem for the chaotic motion of a 3D rigid pendulum subjected to a constant gravitationM force is studied. The 3D rigid pendulum is assumed to be consist of a rigid body supported by a fixed and frictionless pivot with three rotational degrees. In order to avoid the singular phenomenon of Euler's angular velocity equation, the quaternion kinematic equation is used to describe the motion of the 3D rigid pendulum. An OPCL controller for chaotic motion of a 3D rigid pendulum at equilibrium position is designed. This OPCL controller contains two parts: the open-loop part to construct an ideal trajectory and the closed-loop part to stabilize the 3D rigid pendulum. Simulation results show that the controller is effective and efficient.
文摘A type of single neuron adaptive PID regulator with auto-tuning gain is proposed and applied to the work control of fans, waterpumps and air-pressers etc. in Handan Iron & Steel Compel China. The robusthess of induStrial parameter closed-loop process controlsystems is improved, and the work quality of the systems bettered.
文摘In order to study the factors that influence the air fuel ratio(A/F), the amplitude and frequency of A/F fluctuation, to reform the control strategy, and to improve the efficiency of three way catalyst(TWC), a model of closed loop control system including the engine, air fuel mixing and transportation, oxygen sensor and controller, etc., is developed. Various factors that influence the A/F control are studied by simulation. The simulation results show that the reference voltage of oxygen sensor will influence the mean value of A/F ratio, the controller parameters will influence the amplitude of A/F fluctuation, and the operating conditions of the engine determine the frequency of A/F fluctuations, the amplitude of A/F fluctuation can be reduced to within demanded values by logical selection of the signal acquisition method and controller parameters. Higher A/F fluctuation frequency under high speed and load can be reduced through software delay in the controller. The A/F closed loop control system based on the simulation results, accompanied with a rare earth element TWC, gives a better efficiency of conversion against harmful emissions.
基金National Natural Science Foundation of China(No.61261029)
文摘In order to improve the steady state performance,dynamic response and power factor of traditional power factor correction(PFC)digital control method and reduce the harmonic distortion of input current,a double closed loop active power factorcorrection(APFC)control method with feed-forward is proposed.Firstly,the small signal model of Boost PFC control systemis built and the system transfer function is deduced,and then the parameters of the main device with Boost topology is estimated.By means of the feed-forward,the system can quickly respond to the change in input voltage.Furthermore,the use ofvoltage loop and current loop can achieve input current and output voltage regulation Simulink modeling shows that this methodcan effectively control the output voltage in case of input voltage largely fluctuating,improve the system dynamic response abilityand input power factor,and reduce the input current harmonic distortion
文摘In this paper, we propose a smart step closed-loop power control (SSPC) algorithm and a base station assignment method based on minimizing the transmitter power (BSA-MTP) technique in a direct sequence-code division multiple access (DS-CDMA) receiver with frequency-selective Rayleigh fading. This receiver consists of three stages. In the first stage, with constrained least mean squared (CLMS) algorithm, the desired users’ signal in an arbitrary path is passed and the inter-path interference (IPI) is reduced in other paths in each RAKE finger. Also in this stage, the multiple access interference (MAI) from other users is reduced. Thus, the matched filter (MF) can use for more reduction of the IPI and MAI in each RAKE finger in the second stage. Also in the third stage, the output signals from the matched filters are combined according to the conventional maximal ratio combining (MRC) principle and then are fed into the decision circuit of the desired user. The simulation results indicate that the SSPC algorithm and the BSA-MTP technique can significantly reduce the network bit error rate (BER) compared to the other methods. Also, we observe that significant savings in total transmit power (TTP) are possible with our methods.
文摘There have been a large number of accidents at level crossings of railways and this has been considered to be a significant issue to be solved for the realization of safe and stable railway transport.A conventional level crossing control system is characterized by the use of two types of electronic train detectors;one detects a train approaching to a level crossing section and the other then detects the train having left the level crossing.By contrast,closed-loop level crossing control systems in which level crossing control equipment and train-borne equipment communicate with each other have been advocated and are expected to serve as an effective solution to the abovementioned issue.This paper describes the following three types of closed-loop level crossing control systems:decentralized level crossing control system,fully-centralized comprehensive level crossing control system and fully-centralized individual level crossing control system.This paper then assesses the safety of these systems in comparison to the conventional level crossing control system.For the purpose of the assessment of their safety,a new accident analysis model called STAMP(systems theoretic accident model and processes)that is suitable for software intensive systems is used to clarify the advantage of the proposed three types of level crossing control systems in terms of safety.
文摘According to the soft-switching pulsed SAW (Submerged arc weld) weld power supply based on the double closed-loop constant current control mode, a small signal mathematic model of main circuit of soft-switching SAW inverter was established by applying the method of three-terminal switching device modeling method, and the math-ematic model of double closed-loop phase-shift control system circuit was established by applying the method of state-space averaging method. Dynamic performance of the inverter was analyzed on base of the established math-ematic model, and the tested wave of dynamic performance was shown by experimentation. Research and experimentation show that relation between structure of the power source circuit and dynamic performance of the controlling system can be announced by the established mathematic model, which provides development of power supply and optimized design of controlling parameter with theoretical guidance.
文摘We study the entanglement of dressed atom and its spontaneous emission in a three-level A-type closed-loop atomic system in a multi-photon resonance condition and beyond it. It is shown that the von Neumann entropy in such a system is phase-dependent, and it can be controlled by either the intensity or relative phase of applied fields. It is demonstrated that for the special case of the Rabi frequency of applied fields, the system is disentangled. In addition, we take into account the effect of Doppler broadening on the entanglement and it is found that a suitable choice of laser propagation direction allows us to obtain the steady state degree of entanglement (DEM) even in the presence of the Doppler effect.
基金Sponsored by the National Natural Science Foundation of China(Grant No.61233002)the 111 Project(Grant No.B16009)the IAPI Fundamental Research Funds(Grant No.2013ZCX03-01)
文摘This paper explores the model reference adaptive control problem for a class of switched linear systems under arbitrary switching with no need for the measurability of the system state.Based on the state of reference model and the measurable output error, adaptive laws and controllers are designed for switched systems.Each subsystem may have its individual reference model and controller, which increases the design flexibility.The introduction of the closed-loop reference model is to get a better transient performance of the whole switched systems.A numerical example is provided to verify the effectiveness of the main results.
文摘The interference reduction capability of antenna arrays and the power control algorithms have been considered separately as means to decrease the interference in wireless communication networks. In this paper, we propose smart step closed-loop power control (SSPC) algorithm in wireless networks in a 2D urban environment with constrained least mean squared (CLMS) algorithm. This algorithm is capable of efficiently adapting according to the environment and able to permanently maintain the chosen frequency response in the look direction while minimizing the output power of the array. Also, we present switched-beam (SB) technique for enhancing signal to interference plus noise ratio (SINR) in wireless networks. Also, we study an analytical approach for the evaluation of the impact of power control error (PCE) on wireless networks in a 2D urban environment. The simulation results indicate that the convergence speed of the SSPC algorithm is faster than other algorithms. Also, we observe that significant saving in total transmit power (TTP) are possible with our proposed algorithm. Finally, we discuss three parameters of the PCE, number of antenna elements, and path-loss exponent and their effects on capacity of the system via some computer simulations.
基金Project supported by the Natural Science Foundation of Guangdong Province (Grant No 05301018), the Research and Development Fund of Shenzhen University, China (Grant No 200549), and the National Natural Science Foundation of China (Grant Nos 10334010 and 10404009).
文摘A four-level atomic system with a closed interaction loop connected by two coherent driving fields and a microwave field is investigated. The results show that inversionless gain can be achieved on a higher frequency transition outside the closed interaction loop, and the gain behaviour can be modulated by the phase of the closed loop as well as the amplitude of the microwave field. The phase sensitivity property in such a scheme is similar to that in an analogous configuration with spontaneously generated coherence, but it is beyond the rigorous condition of near-degenerate levels with non-orthogonal dipole moments. Therefore this scheme is much more convenient in experimental realization.
基金supported by the National Natural Science Foundation of China(Nos.51875287, 52075250)the Special Fund for Transformation of Scientific,and Technological Achievements of Jiangsu Province(No.BA2018053)
文摘The existing kinematic parameter calibration method cannot further improve the absolute positioning accuracy of the robot due to the uncertainty of positioning error caused by robot joint backlash.In view of this problem,a closed‑loop feedback accuracy compensation method for robot joints was proposed.Firstly,a Chebyshev polynomial error estimation model was established which took geometric error and non‑geometric error into account.In addition,the absolute linear grating scale was installed at each joint of the robot and the positioning error of the robot end was mapped to the joint angle.And the joint angle corrected value was obtained.Furthermore,the closed‑loop feedback of robot joints was established to realize the online correction of the positioning error.Finally,an experiment on the KUKA KR210 industrial robot was conducted to demonstrate the effectiveness of the method.The result shows that the maximum absolute positioning error of the robot is reduced by 75%from 0.76 mm to 0.19 mm.This method can compensate the robot joint backlash effectively and further improve the absolute positioning accuracy of the robot.