Classical localization methods use Cartesian or Polar coordinates, which require a priori range information to determine whether to estimate position or to only find bearings. The modified polar representation (MPR) u...Classical localization methods use Cartesian or Polar coordinates, which require a priori range information to determine whether to estimate position or to only find bearings. The modified polar representation (MPR) unifies near-field and farfield models, alleviating the thresholding effect. Current localization methods in MPR based on the angle of arrival (AOA) and time difference of arrival (TDOA) measurements resort to semidefinite relaxation (SDR) and Gauss-Newton iteration, which are computationally complex and face the possible diverge problem. This paper formulates a pseudo linear equation between the measurements and the unknown MPR position,which leads to a closed-form solution for the hybrid TDOA-AOA localization problem, namely hybrid constrained optimization(HCO). HCO attains Cramér-Rao bound (CRB)-level accuracy for mild Gaussian noise. Compared with the existing closed-form solutions for the hybrid TDOA-AOA case, HCO provides comparable performance to the hybrid generalized trust region subproblem (HGTRS) solution and is better than the hybrid successive unconstrained minimization (HSUM) solution in large noise region. Its computational complexity is lower than that of HGTRS. Simulations validate the performance of HCO achieves the CRB that the maximum likelihood estimator (MLE) attains if the noise is small, but the MLE deviates from CRB earlier.展开更多
Second-order axially moving systems are common models in the field of dynamics, such as axially moving strings, cables, and belts. In the traditional research work, it is difficult to obtain closed-form solutions for ...Second-order axially moving systems are common models in the field of dynamics, such as axially moving strings, cables, and belts. In the traditional research work, it is difficult to obtain closed-form solutions for the forced vibration when the damping effect and the coupling effect of multiple second-order models are considered.In this paper, Green's function method based on the Laplace transform is used to obtain closed-form solutions for the forced vibration of second-order axially moving systems. By taking the axially moving damping string system and multi-string system connected by springs as examples, the detailed solution methods and the analytical Green's functions of these second-order systems are given. The mode functions and frequency equations are also obtained by the obtained Green's functions. The reliability and convenience of the results are verified by several examples. This paper provides a systematic analytical method for the dynamic analysis of second-order axially moving systems, and the obtained Green's functions are applicable to different second-order systems rather than just string systems. In addition, the work of this paper also has positive significance for the study on the forced vibration of high-order systems.展开更多
Considering three longitudinal displacement functions and uniform axial displacement functions for shear lag effect and uniform axial deformation of thin-walled box girder with varying depths,a simple and efficient me...Considering three longitudinal displacement functions and uniform axial displacement functions for shear lag effect and uniform axial deformation of thin-walled box girder with varying depths,a simple and efficient method with high precision to analyze the shear lag effect of thin-walled box girders was proposed.The governing differential equations and boundary conditions of the box girder under lateral loading were derived based on the energy-variational method,and closed-form solutions to stress and deflection corresponding to lateral loading were obtained.Analysis and calculations were carried out with respect to a trapezoidal box girder under concentrated loading or uniform loading and a rectangular box girder under concentrated loading.The analytical results were compared with numerical solutions derived according to the high order finite strip element method and the experimental results.The investigation shows that the closed-form solution is in good agreement with the numerical solutions derived according to the high order finite strip method and the experimental results,and has good stability.Because of the shear lag effect,the stress in cross-section centroid is no longer zero,thus it is not reasonable enough to assume that the strain in cross-section centroid is zero without considering uniform axial deformation.展开更多
Based on the consideration of longitudinal warp caused by shear lag effects on concrete slabs and bottom plates of steel beams,shear deformation of steel beams and interface slip between steel beams and concrete slabs...Based on the consideration of longitudinal warp caused by shear lag effects on concrete slabs and bottom plates of steel beams,shear deformation of steel beams and interface slip between steel beams and concrete slabs,the governing differential equations and boundary conditions of the steel-concrete composite box beams under lateral loading were derived using energy-variational method.The closed-form solutions for stress,deflection and slip of box beams under lateral loading were obtained,and the comparison of the analytical results and the experimental results for steel-concrete composite box beams under concentrated loading or uniform loading verifies the closed-form solution.The investigation of the parameters of load effects on composite box beams shows that:1) Slip stiffness has considerable impact on mid-span deflection and end slip when it is comparatively small;the mid-span deflection and end slip decrease significantly with the increase of slip stiffness,but when the slip stiffness reaches a certain value,its impact on mid-span deflection and end slip decreases to be negligible.2) The shear deformation has certain influence on mid-span deflection,and the larger the load is,the greater the influence is.3) The impact of shear deformation on end slip can be neglected.4) The strain of bottom plate of steel beam decreases with the increase of slip stiffness,while the shear lag effect becomes more significant.展开更多
The direct separation of variables is used to obtain the closed-form solutions for the free vibrations of rectangular Mindlin plates. Three different characteristic equations are derived by using three different metho...The direct separation of variables is used to obtain the closed-form solutions for the free vibrations of rectangular Mindlin plates. Three different characteristic equations are derived by using three different methods. It is found that the deflection can be expressed by means of the four characteristic roots and the two rotations should be expressed by all the six characteristic roots,which is the particularity of Mindlin plate theory. And the closed-form solutions,which satisfy two of the three governing equations and all boundary conditions and are accurate for rectangular plates with moderate thickness,are derived for any combinations of simply supported and clamped edges. The free edges can also be dealt with if the other pair of opposite edges is simply supported. The present results agree well with results published previously by other methods for different aspect ratios and relative thickness.展开更多
Efficient calculation of the electrostatic interactions including repulsive force between charged molecules in a biomolecule system or charged particles in a colloidal system is necessary for the molecular scale or pa...Efficient calculation of the electrostatic interactions including repulsive force between charged molecules in a biomolecule system or charged particles in a colloidal system is necessary for the molecular scale or particle scale mechanical analyses of these systems. The electrostatic repulsive force depends on the mid-plane potential between two charged particles. Previous analytical solutions of the mid-plane potential, including those based on simplified assumptions and modern mathematic methods, are reviewed. It is shown that none of these solutions applies to wide ranges of interparticle distance from 0 to 10 and surface potential from 1 to 10. Three previous analytical solutions are chosen to develop a semi-analytical solution which is proven to have more extensive applications. Furthermore, an empirical closed-form expression of mid-plane potential is proposed based on plenty of numerical solutions. This empirical solution has extensive applications, as well as high computational efficiency.展开更多
In this paper,a nonlinear strength criterion is proposed using the average of intermediate(σ2)and minor(σ3)principal stresses in place of σ3 in Ramamurthy(1994)’s strength criterion.The proposed criterion has the ...In this paper,a nonlinear strength criterion is proposed using the average of intermediate(σ2)and minor(σ3)principal stresses in place of σ3 in Ramamurthy(1994)’s strength criterion.The proposed criterion has the main advantages of negligible variation of strength parameters with confining stress and ability to link with conventional strength parameters.Additionally,a new closed-form solution based on the proposed criterion is derived and validated for Chhibro Khodri tunnel.Further,analytical solutions including Singh’s elastoplastic theory,Scussel’s approach,and closed-form solutions based on conventional and modified Ramamurthy(2007)criteria are compared with the results of proposed approach.It is shown that the in situ squeezing pressure predictions made by the proposed approach are more accurate.Also,a parametric study of the present analytical solution is carried out,which displays explicit dependency of tunnel stability on internal support pressure and tunnel depth.The influence of tunnel geometry is observed to be dependent on the applied support pressure.展开更多
A closed-form numerical algorithm (CFNA) is analyzed in detail. CFNA iswidely used in mechanical dynamics for periodic solution of second-order original differentialequations (SODE) with periodic time-variant coeffici...A closed-form numerical algorithm (CFNA) is analyzed in detail. CFNA iswidely used in mechanical dynamics for periodic solution of second-order original differentialequations (SODE) with periodic time-variant coefficients. The principle of the algorithm is todiscretize the motion period into many short time intervals, so the coefficient matrices of theequation set are regarded as constant in a time interval. Defects are found in the originalalgorithm in treating the modal coordinates at the two end-nodes and important modifications to thedefects is made for the algorithm. The modified algorithm is finally used to solve the dynamicproblem of a three-ring planetary gear transmission.展开更多
In this paper,an exact closed-form solution for a curved sandwich panel with two piezoelectric layers as actuator and sensor that are inserted in the top and bottom facings is presented.The core is made from functiona...In this paper,an exact closed-form solution for a curved sandwich panel with two piezoelectric layers as actuator and sensor that are inserted in the top and bottom facings is presented.The core is made from functionally graded(FG)material that has heterogeneous power-law distribution through the radial coordinate.It is assumed that the core is subjected to a magnetic field whereas the core is covered by two insulated composite layers.To determine the exact solution,first characteristic equations are derived for different material types in a polar coordinate system,namely,magneto-elastic,elastic,and electro-elastic for the FG,orthotropic,and piezoelectric materials,respectively.The displacement-based method is used instead of the stress-based method to derive a set of closed-form real-valued solutions for both real and complex roots.Based on the elasticity theory,exact solutions for the governing equations are determined layer-by-layer that are considerably more accurate than typical simplified theories.The accuracy of the presented method is compared and validated with the available literature and the finite element simulation.The effects of geometrical and material parameters such as FG index,angular span along with external conditions such as magnetic field,mechanical pressure,and electrical difference are investigated in detail through numerical examples.展开更多
Density-graded cellular materials have tremendous potential in structural applications where impact resistance is required.Cellular materials subjected to high impact loading result in a compaction type deformation,us...Density-graded cellular materials have tremendous potential in structural applications where impact resistance is required.Cellular materials subjected to high impact loading result in a compaction type deformation,usually modeled using continuum-based shock theory.The resulting governing differential equation of the shock model is nonlinear,and the density gradient further complicates the problem.Earlier studies have employed numerical methods to obtain the solution.In this study,an analytical closed-form solution is proposed to predict the response of density-graded cellular materials subjected to a rigid body impact.Solutions for the velocity of the impinging rigid body mass,energy absorption capacity of the cellular material,and the incident stress are obtained for a single shock propagation.The results obtained are in excellent agreement with the existing numerical solutions found in the literature.The proposed analytical solution can be potentially used for parametric studies and for effectively designing graded structures to mitigate impact.展开更多
A closed-form solution to the linear matrix equation AX-EXF = BY with X and Y unknown and matrix F being in a companion form is proposed, and two equivalent forms of this solution are also presented. The results provi...A closed-form solution to the linear matrix equation AX-EXF = BY with X and Y unknown and matrix F being in a companion form is proposed, and two equivalent forms of this solution are also presented. The results provide great convenience to the computation and analysis of the solutions to this class of equations, and can perform important functions in many analysis and design problems in descriptor system theory. The results proposed here are parallel to and more general than our early work about the linear matrix equation AX-XF = BY .展开更多
In this paper,the Symbol Error Rate(SER)performance for Orthogonal Space-Time Block Coded(OSTBC)Orthogonal Frequency Division Multiplexing(OFDM)systems over Nakagami-m fading channels is analysed.A novel closed-form S...In this paper,the Symbol Error Rate(SER)performance for Orthogonal Space-Time Block Coded(OSTBC)Orthogonal Frequency Division Multiplexing(OFDM)systems over Nakagami-m fading channels is analysed.A novel closed-form SER expression is proposed,which incorporates the Gauss hypergeometric function and Appell hypergeometric function into the conventional Probability Density Function(PDF)approach.The proposed exact closed-form SER expression is a generalised solution since it perfectly captures OSTBCOFDM systems’performances when having different antenna configurations that employ various modulation schemes and which experience various fading conditions.Finally,Monte Carlo simulation results are provided to demonstrate the exact match between the simulation results and the proposed analytical expressions.展开更多
Based on the complex effective conductivity method, a closed-form expression for the internal impedance of mixed carbon nanotube (CNT) bundles, in which the number of CNTs for a given diameter follows a Gaussian dis...Based on the complex effective conductivity method, a closed-form expression for the internal impedance of mixed carbon nanotube (CNT) bundles, in which the number of CNTs for a given diameter follows a Gaussian distribution, is proposed in this paper. It can appropriately capture the skin effect as well as the temperature effect of mixed CNT bundles. The results of the closed-form expression and the numerical calculation are compared with various mean diameters, standard deviations, and temperatures. It is shown that the proposed model has very high accuracy in the whole frequency range considered, with maximum errors of 1% and 2.3% for the resistance and the internal inductance, respectively. Moreover, by using the proposed model, the high-frequency electrical characteristics of mixed CNT bundles are deeply analyzed to provide helpful design guidelines for their application in future high-performance three-dimensional integrated circuits.展开更多
Dynamic programming(DP)is frequently used to obtain the optimal solution to the hybrid electric vehicle(HEV)energy management.The trade-off between the accuracy and the computational effort is the biggest problem for ...Dynamic programming(DP)is frequently used to obtain the optimal solution to the hybrid electric vehicle(HEV)energy management.The trade-off between the accuracy and the computational effort is the biggest problem for the DP method.The closed-form solution to the DP is proposed to solve this problem.Firstly,the affine linear model of the engine fuel rate is obtained based on engine test data.The piecewise linear approximation of the motor power demand is obtained considering the different energy flows in the charging and discharging stages of the battery.Then,the second-order Taylor expansion for the cost matrix at each time and state grid point is introduced to get the closed-form solution of the optimal torque split.The results show that this method can greatly reduce the computing burden by 93%while ensuring near-optimal fuel economy compared with the conventional DP method.展开更多
Highly accurate closed-form eigensolutions for flutter of three-dimensional(3D)panel with arbitrary combinations of simply supported(S),glide(G),clamped(C)and free(F)boundary conditions(BCs),such as cantilever panels,...Highly accurate closed-form eigensolutions for flutter of three-dimensional(3D)panel with arbitrary combinations of simply supported(S),glide(G),clamped(C)and free(F)boundary conditions(BCs),such as cantilever panels,are achieved according to the linear thin plate theory and the first-order piston theory as well as the complex modal analysis,and all solutions are in a simple and explicit form.The iterative Separation-of-Variable(iSOV)method proposed by the pre-sent authors is employed to obtain the highly accurate eigensolutions.The flutter mechanism is studied with the benefit of eigenvalue properties from mathematical senses.The effects of boundary conditions,chord-thickness ratios,aerodynamic damping,aspect ratios and in-plane loads on flut-ter properties are examined.The results are compared with those of Kantorovich method and Galerkin method,and also coincide well with analytical solutions in literature,verifying the accu-racy of the present closed-form results.It is revealed that,(A)the flutter characteristics are domi-nated by the cross section properties of panels in the direction of stream flow;(B)two types of flutter,called coupled-mode flutter and zero-frequency flutter which includes zero-frequency single-mode flutter and buckling,are observed;(C)boundary conditions and in-plane loads can affect both flutter boundary and flutter type;(D)the flutter behavior of 3D panel is similar to that of the two-dimensional(2D)panel if the aspect ratio is up to a certain value;(E)four to six modes should be used in the Galerkin method for accurate eigensolutions,and the results converge to that of Kantorovich method which uses the same mode functions in the direction perpendicular to the stream flow.The present analysis method can be used as a reference for other stability issues characterized by complex eigenvalues,and the highly closed-form solutions are useful in parameter designs and can also be taken as benchmarks for the validation of numerical methods.展开更多
Nonlinear evolution equations(NLEEs)are frequently employed to determine the fundamental principles of natural phenomena.Nonlinear equations are studied extensively in nonlinear sciences,ocean physics,fluid dynamics,p...Nonlinear evolution equations(NLEEs)are frequently employed to determine the fundamental principles of natural phenomena.Nonlinear equations are studied extensively in nonlinear sciences,ocean physics,fluid dynamics,plasma physics,scientific applications,and marine engineering.The generalized exponen-tial rational function(GERF)technique is used in this article to seek several closed-form wave solutions and the evolving dynamics of different wave profiles to the generalized nonlinear wave equation in(3+1)dimensions,which explains several more nonlinear phenomena in liquids,including gas bubbles.A large number of closed-form wave solutions are generated,including trigonometric function solutions,hyper-bolic trigonometric function solutions,and exponential rational functional solutions.In the dynamics of distinct solitary waves,a variety of soliton solutions are obtained,including single soliton,multi-wave structure soliton,kink-type soliton,combo singular soliton,and singularity-form wave profiles.These de-termined solutions have never previously been published.The dynamical wave structures of some analyt-ical solutions are graphically demonstrated using three-dimensional graphics by providing suitable values to free parameters.This technique can also be used to obtain the soliton solutions of other well-known equations in engineering physics,fluid dynamics,and other fields of nonlinear sciences.展开更多
The prediction of liquefaction-induced lateral spreading/displacement(Dh)is a challenging task for civil/geotechnical engineers.In this study,a new approach is proposed to predict Dh using gene expression programming(...The prediction of liquefaction-induced lateral spreading/displacement(Dh)is a challenging task for civil/geotechnical engineers.In this study,a new approach is proposed to predict Dh using gene expression programming(GEP).Based on statistical reasoning,individual models were developed for two topographies:free-face and gently sloping ground.Along with a comparison with conventional approaches for predicting the Dh,four additional regression-based soft computing models,i.e.Gaussian process regression(GPR),relevance vector machine(RVM),sequential minimal optimization regression(SMOR),and M5-tree,were developed and compared with the GEP model.The results indicate that the GEP models predict Dh with less bias,as evidenced by the root mean square error(RMSE)and mean absolute error(MAE)for training(i.e.1.092 and 0.815;and 0.643 and 0.526)and for testing(i.e.0.89 and 0.705;and 0.773 and 0.573)in free-face and gently sloping ground topographies,respectively.The overall performance for the free-face topology was ranked as follows:GEP>RVM>M5-tree>GPR>SMOR,with a total score of 40,32,24,15,and 10,respectively.For the gently sloping condition,the performance was ranked as follows:GEP>RVM>GPR>M5-tree>SMOR with a total score of 40,32,21,19,and 8,respectively.Finally,the results of the sensitivity analysis showed that for both free-face and gently sloping ground,the liquefiable layer thickness(T_(15))was the major parameter with percentage deterioration(%D)value of 99.15 and 90.72,respectively.展开更多
Broadband vibration attenuation is a challenging task in engineering since it is difficult to achieve low-frequency and broadband vibration control simultaneously.To solve this problem,this paper designs a piezoelectr...Broadband vibration attenuation is a challenging task in engineering since it is difficult to achieve low-frequency and broadband vibration control simultaneously.To solve this problem,this paper designs a piezoelectric meta-beam with unidirectional electric circuits,exhibiting promising broadband attenuation capabilities.An analytical model in a closed form for achieving the solution of unidirectional vibration transmission of the designed meta-beam is developed based on the state-space transfer function method.The method can analyze the forward and backward vibration transmission of the piezoelectric meta-beam in a unified manner,providing reliable dynamics solutions of the beam.The analytical results indicate that the meta-beam effectively reduces the unidirectional vibration across a broad low-frequency range,which is also verified by the solutions obtained from finite element analyses.The designed meta-beam and the proposed analytical method facilitate a comprehensive investigation into the distinctive unidirectional transmission behavior and superb broadband vibration attenuation performance.展开更多
The elastoplastic pure bending problem of a curved beam with material inhomo- geneity is investigated based on Tresca's yield criterion and its associated flow rule. Suppose that the material is elastically isotropic...The elastoplastic pure bending problem of a curved beam with material inhomo- geneity is investigated based on Tresca's yield criterion and its associated flow rule. Suppose that the material is elastically isotropic, ideally elastic-plastic and its elastic modulus and yield limit vary radially according to exponential functions. Closed-form solutions to the stresses and radial displacement in both purely elastic stress state and partially plastic stress state are presented. Numerical examples reveal the distinct characteristics of elastoplastic bending of a curved beam composed of inhomogeneous materials. Due to the inhomogeneity of materials, the bearing capac- ity of the curved beam can be improved greatly and the initial yield mode can also be dominated. Closed-form solutions presented here can serve as benchmark results for evaluating numerical solutions.展开更多
基金supported by the National Natural Science Foundation of China (62101359)Sichuan University and Yibin Municipal People’s Government University and City Strategic Cooperation Special Fund Project (2020CDYB-29)+1 种基金the Science and Technology Plan Transfer Payment Project of Sichuan Province (2021ZYSF007)the Key Research and Development Program of Science and Technology Department of Sichuan Province (2020YFS0575,2021KJT0012-2 021YFS-0067)。
文摘Classical localization methods use Cartesian or Polar coordinates, which require a priori range information to determine whether to estimate position or to only find bearings. The modified polar representation (MPR) unifies near-field and farfield models, alleviating the thresholding effect. Current localization methods in MPR based on the angle of arrival (AOA) and time difference of arrival (TDOA) measurements resort to semidefinite relaxation (SDR) and Gauss-Newton iteration, which are computationally complex and face the possible diverge problem. This paper formulates a pseudo linear equation between the measurements and the unknown MPR position,which leads to a closed-form solution for the hybrid TDOA-AOA localization problem, namely hybrid constrained optimization(HCO). HCO attains Cramér-Rao bound (CRB)-level accuracy for mild Gaussian noise. Compared with the existing closed-form solutions for the hybrid TDOA-AOA case, HCO provides comparable performance to the hybrid generalized trust region subproblem (HGTRS) solution and is better than the hybrid successive unconstrained minimization (HSUM) solution in large noise region. Its computational complexity is lower than that of HGTRS. Simulations validate the performance of HCO achieves the CRB that the maximum likelihood estimator (MLE) attains if the noise is small, but the MLE deviates from CRB earlier.
基金Project supported by the National Natural Science Foundation of China (No. 12272323)。
文摘Second-order axially moving systems are common models in the field of dynamics, such as axially moving strings, cables, and belts. In the traditional research work, it is difficult to obtain closed-form solutions for the forced vibration when the damping effect and the coupling effect of multiple second-order models are considered.In this paper, Green's function method based on the Laplace transform is used to obtain closed-form solutions for the forced vibration of second-order axially moving systems. By taking the axially moving damping string system and multi-string system connected by springs as examples, the detailed solution methods and the analytical Green's functions of these second-order systems are given. The mode functions and frequency equations are also obtained by the obtained Green's functions. The reliability and convenience of the results are verified by several examples. This paper provides a systematic analytical method for the dynamic analysis of second-order axially moving systems, and the obtained Green's functions are applicable to different second-order systems rather than just string systems. In addition, the work of this paper also has positive significance for the study on the forced vibration of high-order systems.
基金Projects(51078355,50938008) supported by the National Natural Science Foundation of ChinaProject(CX2011B093) supported by the Doctoral Candidate Research Innovation Program of Hunan Province, ChinaProject(20117Q008) supported by the Basic Scientific Research Funds for Central Universities of China
文摘Considering three longitudinal displacement functions and uniform axial displacement functions for shear lag effect and uniform axial deformation of thin-walled box girder with varying depths,a simple and efficient method with high precision to analyze the shear lag effect of thin-walled box girders was proposed.The governing differential equations and boundary conditions of the box girder under lateral loading were derived based on the energy-variational method,and closed-form solutions to stress and deflection corresponding to lateral loading were obtained.Analysis and calculations were carried out with respect to a trapezoidal box girder under concentrated loading or uniform loading and a rectangular box girder under concentrated loading.The analytical results were compared with numerical solutions derived according to the high order finite strip element method and the experimental results.The investigation shows that the closed-form solution is in good agreement with the numerical solutions derived according to the high order finite strip method and the experimental results,and has good stability.Because of the shear lag effect,the stress in cross-section centroid is no longer zero,thus it is not reasonable enough to assume that the strain in cross-section centroid is zero without considering uniform axial deformation.
基金Projects(51078355,50938008) supported by the National Natural Science Foundation of ChinaProject(094801020) supported by the Academic Scholarship for Doctoral Candidates of the Ministry of Education,China+1 种基金Project(CX2011B093) supported by the Doctoral Candidate Research Innovation Project of Hunan Province, ChinaProject(20117Q008) supported by the Central University Basic Scientific Research Business Expenses Special Fund of China
文摘Based on the consideration of longitudinal warp caused by shear lag effects on concrete slabs and bottom plates of steel beams,shear deformation of steel beams and interface slip between steel beams and concrete slabs,the governing differential equations and boundary conditions of the steel-concrete composite box beams under lateral loading were derived using energy-variational method.The closed-form solutions for stress,deflection and slip of box beams under lateral loading were obtained,and the comparison of the analytical results and the experimental results for steel-concrete composite box beams under concentrated loading or uniform loading verifies the closed-form solution.The investigation of the parameters of load effects on composite box beams shows that:1) Slip stiffness has considerable impact on mid-span deflection and end slip when it is comparatively small;the mid-span deflection and end slip decrease significantly with the increase of slip stiffness,but when the slip stiffness reaches a certain value,its impact on mid-span deflection and end slip decreases to be negligible.2) The shear deformation has certain influence on mid-span deflection,and the larger the load is,the greater the influence is.3) The impact of shear deformation on end slip can be neglected.4) The strain of bottom plate of steel beam decreases with the increase of slip stiffness,while the shear lag effect becomes more significant.
基金supported by the National Natural Science Foundation of China (No. 10772014)
文摘The direct separation of variables is used to obtain the closed-form solutions for the free vibrations of rectangular Mindlin plates. Three different characteristic equations are derived by using three different methods. It is found that the deflection can be expressed by means of the four characteristic roots and the two rotations should be expressed by all the six characteristic roots,which is the particularity of Mindlin plate theory. And the closed-form solutions,which satisfy two of the three governing equations and all boundary conditions and are accurate for rectangular plates with moderate thickness,are derived for any combinations of simply supported and clamped edges. The free edges can also be dealt with if the other pair of opposite edges is simply supported. The present results agree well with results published previously by other methods for different aspect ratios and relative thickness.
基金Project supported by the National Key Basic Research Program of China(Grant No.2012CB026103)the National Natural Science Foundation of China(Grant No.51009136)the Natural Science Foundation of Jiangsu Province,China(Grant No.BK2011212)
文摘Efficient calculation of the electrostatic interactions including repulsive force between charged molecules in a biomolecule system or charged particles in a colloidal system is necessary for the molecular scale or particle scale mechanical analyses of these systems. The electrostatic repulsive force depends on the mid-plane potential between two charged particles. Previous analytical solutions of the mid-plane potential, including those based on simplified assumptions and modern mathematic methods, are reviewed. It is shown that none of these solutions applies to wide ranges of interparticle distance from 0 to 10 and surface potential from 1 to 10. Three previous analytical solutions are chosen to develop a semi-analytical solution which is proven to have more extensive applications. Furthermore, an empirical closed-form expression of mid-plane potential is proposed based on plenty of numerical solutions. This empirical solution has extensive applications, as well as high computational efficiency.
文摘In this paper,a nonlinear strength criterion is proposed using the average of intermediate(σ2)and minor(σ3)principal stresses in place of σ3 in Ramamurthy(1994)’s strength criterion.The proposed criterion has the main advantages of negligible variation of strength parameters with confining stress and ability to link with conventional strength parameters.Additionally,a new closed-form solution based on the proposed criterion is derived and validated for Chhibro Khodri tunnel.Further,analytical solutions including Singh’s elastoplastic theory,Scussel’s approach,and closed-form solutions based on conventional and modified Ramamurthy(2007)criteria are compared with the results of proposed approach.It is shown that the in situ squeezing pressure predictions made by the proposed approach are more accurate.Also,a parametric study of the present analytical solution is carried out,which displays explicit dependency of tunnel stability on internal support pressure and tunnel depth.The influence of tunnel geometry is observed to be dependent on the applied support pressure.
基金This project is supported by National Natural Science Foundation of China (No.50205019) Development Foundation of Shanghai Municipal Commission of Education, China (No.04EB03).
文摘A closed-form numerical algorithm (CFNA) is analyzed in detail. CFNA iswidely used in mechanical dynamics for periodic solution of second-order original differentialequations (SODE) with periodic time-variant coefficients. The principle of the algorithm is todiscretize the motion period into many short time intervals, so the coefficient matrices of theequation set are regarded as constant in a time interval. Defects are found in the originalalgorithm in treating the modal coordinates at the two end-nodes and important modifications to thedefects is made for the algorithm. The modified algorithm is finally used to solve the dynamicproblem of a three-ring planetary gear transmission.
文摘In this paper,an exact closed-form solution for a curved sandwich panel with two piezoelectric layers as actuator and sensor that are inserted in the top and bottom facings is presented.The core is made from functionally graded(FG)material that has heterogeneous power-law distribution through the radial coordinate.It is assumed that the core is subjected to a magnetic field whereas the core is covered by two insulated composite layers.To determine the exact solution,first characteristic equations are derived for different material types in a polar coordinate system,namely,magneto-elastic,elastic,and electro-elastic for the FG,orthotropic,and piezoelectric materials,respectively.The displacement-based method is used instead of the stress-based method to derive a set of closed-form real-valued solutions for both real and complex roots.Based on the elasticity theory,exact solutions for the governing equations are determined layer-by-layer that are considerably more accurate than typical simplified theories.The accuracy of the presented method is compared and validated with the available literature and the finite element simulation.The effects of geometrical and material parameters such as FG index,angular span along with external conditions such as magnetic field,mechanical pressure,and electrical difference are investigated in detail through numerical examples.
基金the financial support provided by the US Army Research Office under grant number W911NF-18-1-0023.
文摘Density-graded cellular materials have tremendous potential in structural applications where impact resistance is required.Cellular materials subjected to high impact loading result in a compaction type deformation,usually modeled using continuum-based shock theory.The resulting governing differential equation of the shock model is nonlinear,and the density gradient further complicates the problem.Earlier studies have employed numerical methods to obtain the solution.In this study,an analytical closed-form solution is proposed to predict the response of density-graded cellular materials subjected to a rigid body impact.Solutions for the velocity of the impinging rigid body mass,energy absorption capacity of the cellular material,and the incident stress are obtained for a single shock propagation.The results obtained are in excellent agreement with the existing numerical solutions found in the literature.The proposed analytical solution can be potentially used for parametric studies and for effectively designing graded structures to mitigate impact.
基金supported by the Major Program of National Nat-ural Science Foundation of China (No. 60710002) Program for Changjiang Scholars and Innovative Research Team in University
文摘A closed-form solution to the linear matrix equation AX-EXF = BY with X and Y unknown and matrix F being in a companion form is proposed, and two equivalent forms of this solution are also presented. The results provide great convenience to the computation and analysis of the solutions to this class of equations, and can perform important functions in many analysis and design problems in descriptor system theory. The results proposed here are parallel to and more general than our early work about the linear matrix equation AX-XF = BY .
基金supported by the Fundamental Research Funds for the Central Universities(Dalian Maritime University)under Grants No.2012QN043,No.2011QN116
文摘In this paper,the Symbol Error Rate(SER)performance for Orthogonal Space-Time Block Coded(OSTBC)Orthogonal Frequency Division Multiplexing(OFDM)systems over Nakagami-m fading channels is analysed.A novel closed-form SER expression is proposed,which incorporates the Gauss hypergeometric function and Appell hypergeometric function into the conventional Probability Density Function(PDF)approach.The proposed exact closed-form SER expression is a generalised solution since it perfectly captures OSTBCOFDM systems’performances when having different antenna configurations that employ various modulation schemes and which experience various fading conditions.Finally,Monte Carlo simulation results are provided to demonstrate the exact match between the simulation results and the proposed analytical expressions.
基金Project supported by the National Science and Technology Major Project of China(Grant No.2015ZX03001004)the National Natural Science Foundation of China(Grant Nos.61604113,61625403,61334003,61376039,61574104,and 61474088)
文摘Based on the complex effective conductivity method, a closed-form expression for the internal impedance of mixed carbon nanotube (CNT) bundles, in which the number of CNTs for a given diameter follows a Gaussian distribution, is proposed in this paper. It can appropriately capture the skin effect as well as the temperature effect of mixed CNT bundles. The results of the closed-form expression and the numerical calculation are compared with various mean diameters, standard deviations, and temperatures. It is shown that the proposed model has very high accuracy in the whole frequency range considered, with maximum errors of 1% and 2.3% for the resistance and the internal inductance, respectively. Moreover, by using the proposed model, the high-frequency electrical characteristics of mixed CNT bundles are deeply analyzed to provide helpful design guidelines for their application in future high-performance three-dimensional integrated circuits.
基金National Natural Science Foundation of China:[Grant Number 52077217].
文摘Dynamic programming(DP)is frequently used to obtain the optimal solution to the hybrid electric vehicle(HEV)energy management.The trade-off between the accuracy and the computational effort is the biggest problem for the DP method.The closed-form solution to the DP is proposed to solve this problem.Firstly,the affine linear model of the engine fuel rate is obtained based on engine test data.The piecewise linear approximation of the motor power demand is obtained considering the different energy flows in the charging and discharging stages of the battery.Then,the second-order Taylor expansion for the cost matrix at each time and state grid point is introduced to get the closed-form solution of the optimal torque split.The results show that this method can greatly reduce the computing burden by 93%while ensuring near-optimal fuel economy compared with the conventional DP method.
基金supported by the National Natural Science Foundation of China(Nos.11872090,11672019,11472035)。
文摘Highly accurate closed-form eigensolutions for flutter of three-dimensional(3D)panel with arbitrary combinations of simply supported(S),glide(G),clamped(C)and free(F)boundary conditions(BCs),such as cantilever panels,are achieved according to the linear thin plate theory and the first-order piston theory as well as the complex modal analysis,and all solutions are in a simple and explicit form.The iterative Separation-of-Variable(iSOV)method proposed by the pre-sent authors is employed to obtain the highly accurate eigensolutions.The flutter mechanism is studied with the benefit of eigenvalue properties from mathematical senses.The effects of boundary conditions,chord-thickness ratios,aerodynamic damping,aspect ratios and in-plane loads on flut-ter properties are examined.The results are compared with those of Kantorovich method and Galerkin method,and also coincide well with analytical solutions in literature,verifying the accu-racy of the present closed-form results.It is revealed that,(A)the flutter characteristics are domi-nated by the cross section properties of panels in the direction of stream flow;(B)two types of flutter,called coupled-mode flutter and zero-frequency flutter which includes zero-frequency single-mode flutter and buckling,are observed;(C)boundary conditions and in-plane loads can affect both flutter boundary and flutter type;(D)the flutter behavior of 3D panel is similar to that of the two-dimensional(2D)panel if the aspect ratio is up to a certain value;(E)four to six modes should be used in the Galerkin method for accurate eigensolutions,and the results converge to that of Kantorovich method which uses the same mode functions in the direction perpendicular to the stream flow.The present analysis method can be used as a reference for other stability issues characterized by complex eigenvalues,and the highly closed-form solutions are useful in parameter designs and can also be taken as benchmarks for the validation of numerical methods.
基金the Institution of Emi-nence,University of Delhi,India,for providing financial assistance for this research through the IoE scheme under Faculty Research Programme(FRP)with Ref.No./IoE/2021/12/FRP.
文摘Nonlinear evolution equations(NLEEs)are frequently employed to determine the fundamental principles of natural phenomena.Nonlinear equations are studied extensively in nonlinear sciences,ocean physics,fluid dynamics,plasma physics,scientific applications,and marine engineering.The generalized exponen-tial rational function(GERF)technique is used in this article to seek several closed-form wave solutions and the evolving dynamics of different wave profiles to the generalized nonlinear wave equation in(3+1)dimensions,which explains several more nonlinear phenomena in liquids,including gas bubbles.A large number of closed-form wave solutions are generated,including trigonometric function solutions,hyper-bolic trigonometric function solutions,and exponential rational functional solutions.In the dynamics of distinct solitary waves,a variety of soliton solutions are obtained,including single soliton,multi-wave structure soliton,kink-type soliton,combo singular soliton,and singularity-form wave profiles.These de-termined solutions have never previously been published.The dynamical wave structures of some analyt-ical solutions are graphically demonstrated using three-dimensional graphics by providing suitable values to free parameters.This technique can also be used to obtain the soliton solutions of other well-known equations in engineering physics,fluid dynamics,and other fields of nonlinear sciences.
文摘The prediction of liquefaction-induced lateral spreading/displacement(Dh)is a challenging task for civil/geotechnical engineers.In this study,a new approach is proposed to predict Dh using gene expression programming(GEP).Based on statistical reasoning,individual models were developed for two topographies:free-face and gently sloping ground.Along with a comparison with conventional approaches for predicting the Dh,four additional regression-based soft computing models,i.e.Gaussian process regression(GPR),relevance vector machine(RVM),sequential minimal optimization regression(SMOR),and M5-tree,were developed and compared with the GEP model.The results indicate that the GEP models predict Dh with less bias,as evidenced by the root mean square error(RMSE)and mean absolute error(MAE)for training(i.e.1.092 and 0.815;and 0.643 and 0.526)and for testing(i.e.0.89 and 0.705;and 0.773 and 0.573)in free-face and gently sloping ground topographies,respectively.The overall performance for the free-face topology was ranked as follows:GEP>RVM>M5-tree>GPR>SMOR,with a total score of 40,32,24,15,and 10,respectively.For the gently sloping condition,the performance was ranked as follows:GEP>RVM>GPR>M5-tree>SMOR with a total score of 40,32,21,19,and 8,respectively.Finally,the results of the sensitivity analysis showed that for both free-face and gently sloping ground,the liquefiable layer thickness(T_(15))was the major parameter with percentage deterioration(%D)value of 99.15 and 90.72,respectively.
基金Project supported by the National Natural Science Foundation of China (Nos. U2141244, 11932011,12393781, 12121002, and 12202267)supported by the Oceanic Interdisciplinary Program of Shanghai Jiao Tong University(No.SL2021ZD104)+4 种基金the Science and Technology Cooperation Project of Shanghai Jiao Tong University&Inner Mongolia Autonomous Region-Action Plan of Shanghai Jiao Tong University for“Science and Technology Prosperity”(No.2022XYJG0001-01-08)the Industryuniversity-research Cooperation Fund of Shanghai Academy of Spaceflight Technology(No.USCAST2021-11)Shanghai Pujiang Program(No.22PJ1405300)Young Talent Reservoir of CSTAM(No.CSTAM2022-XSC-QN1)the Starting Grant of Shanghai Jiao Tong University(No.WH220402014).
文摘Broadband vibration attenuation is a challenging task in engineering since it is difficult to achieve low-frequency and broadband vibration control simultaneously.To solve this problem,this paper designs a piezoelectric meta-beam with unidirectional electric circuits,exhibiting promising broadband attenuation capabilities.An analytical model in a closed form for achieving the solution of unidirectional vibration transmission of the designed meta-beam is developed based on the state-space transfer function method.The method can analyze the forward and backward vibration transmission of the piezoelectric meta-beam in a unified manner,providing reliable dynamics solutions of the beam.The analytical results indicate that the meta-beam effectively reduces the unidirectional vibration across a broad low-frequency range,which is also verified by the solutions obtained from finite element analyses.The designed meta-beam and the proposed analytical method facilitate a comprehensive investigation into the distinctive unidirectional transmission behavior and superb broadband vibration attenuation performance.
基金supported by the Disaster Prevention and Engineering Safety Laboratory in Guangxi and the National NaturalScience Foundation of China(Nos.11072177 and 10872150)the Scientific Research Foundation for the ReturnedOverseas Chinese Scholars,State Education Ministry
文摘The elastoplastic pure bending problem of a curved beam with material inhomo- geneity is investigated based on Tresca's yield criterion and its associated flow rule. Suppose that the material is elastically isotropic, ideally elastic-plastic and its elastic modulus and yield limit vary radially according to exponential functions. Closed-form solutions to the stresses and radial displacement in both purely elastic stress state and partially plastic stress state are presented. Numerical examples reveal the distinct characteristics of elastoplastic bending of a curved beam composed of inhomogeneous materials. Due to the inhomogeneity of materials, the bearing capac- ity of the curved beam can be improved greatly and the initial yield mode can also be dominated. Closed-form solutions presented here can serve as benchmark results for evaluating numerical solutions.