期刊文献+
共找到822篇文章
< 1 2 42 >
每页显示 20 50 100
Workload-aware request routing in cloud data center using software-defined networking
1
作者 Haitao Yuan Jing Bi Bohu Li 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2015年第1期151-160,共10页
Large latency of applications will bring revenue loss to cloud infrastructure providers in the cloud data center. The existing controllers of software-defined networking architecture can fetch and process traffic info... Large latency of applications will bring revenue loss to cloud infrastructure providers in the cloud data center. The existing controllers of software-defined networking architecture can fetch and process traffic information in the network. Therefore, the controllers can only optimize the network latency of applications. However, the serving latency of applications is also an important factor in delivered user-experience for arrival requests. Unintelligent request routing will cause large serving latency if arrival requests are allocated to overloaded virtual machines. To deal with the request routing problem, this paper proposes the workload-aware software-defined networking controller architecture. Then, request routing algorithms are proposed to minimize the total round trip time for every type of request by considering the congestion in the network and the workload in virtual machines(VMs). This paper finally provides the evaluation of the proposed algorithms in a simulated prototype. The simulation results show that the proposed methodology is efficient compared with the existing approaches. 展开更多
关键词 cloud data center(CDC) software-defined networking request routing resource allocation network latency optimization
下载PDF
Low-power task scheduling algorithm for large-scale cloud data centers 被引量:3
2
作者 Xiaolong Xu Jiaxing Wu +1 位作者 Geng Yang Ruchuan Wang 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2013年第5期870-878,共9页
How to effectively reduce the energy consumption of large-scale data centers is a key issue in cloud computing. This paper presents a novel low-power task scheduling algorithm (L3SA) for large-scale cloud data cente... How to effectively reduce the energy consumption of large-scale data centers is a key issue in cloud computing. This paper presents a novel low-power task scheduling algorithm (L3SA) for large-scale cloud data centers. The winner tree is introduced to make the data nodes as the leaf nodes of the tree and the final winner on the purpose of reducing energy consumption is selected. The complexity of large-scale cloud data centers is fully consider, and the task comparson coefficient is defined to make task scheduling strategy more reasonable. Experiments and performance analysis show that the proposed algorithm can effectively improve the node utilization, and reduce the overall power consumption of the cloud data center. 展开更多
关键词 cloud computing data center task scheduling energy consumption.
下载PDF
Subject Oriented Autonomic Cloud Data Center Networks Model
3
作者 Hang Qin Li Zhu 《Journal of Data Analysis and Information Processing》 2017年第3期87-95,共9页
This paper investigates autonomic cloud data center networks, which is the solution with the increasingly complex computing environment, in terms of the management and cost issues to meet users’ growing demand. The v... This paper investigates autonomic cloud data center networks, which is the solution with the increasingly complex computing environment, in terms of the management and cost issues to meet users’ growing demand. The virtualized cloud networking is to provide a plethora of rich online applications, including self-configuration, self-healing, self-optimization and self-protection. In addition, we draw on the intelligent subject and multi-agent system, concerning system model, strategy, autonomic cloud computing, involving independent computing system development and implementation. Then, combining the architecture with the autonomous unit, we propose the MCDN (Model of Autonomic Cloud Data Center Networks). This model can define intelligent state, elaborate the composition structure, and complete life cycle. Finally, our proposed public infrastructure can be provided with the autonomous unit in the supported interaction model. 展开更多
关键词 AUTONOMIC cloud Computing AUTONOMOUS Unit data center SELF-CONFIGURATION Service DESCRIPTION
下载PDF
Efficient Multi-Tenant Virtual Machine Allocation in Cloud Data Centers 被引量:2
4
作者 Jiaxin Li Dongsheng Li +1 位作者 Yuming Ye Xicheng Lu 《Tsinghua Science and Technology》 SCIE EI CAS CSCD 2015年第1期81-89,共9页
Virtual Machine(VM) allocation for multiple tenants is an important and challenging problem to provide efficient infrastructure services in cloud data centers. Tenants run applications on their allocated VMs, and th... Virtual Machine(VM) allocation for multiple tenants is an important and challenging problem to provide efficient infrastructure services in cloud data centers. Tenants run applications on their allocated VMs, and the network distance between a tenant's VMs may considerably impact the tenant's Quality of Service(Qo S). In this study, we define and formulate the multi-tenant VM allocation problem in cloud data centers, considering the VM requirements of different tenants, and introducing the allocation goal of minimizing the sum of the VMs' network diameters of all tenants. Then, we propose a Layered Progressive resource allocation algorithm for multi-tenant cloud data centers based on the Multiple Knapsack Problem(LP-MKP). The LP-MKP algorithm uses a multi-stage layered progressive method for multi-tenant VM allocation and efficiently handles unprocessed tenants at each stage. This reduces resource fragmentation in cloud data centers, decreases the differences in the Qo S among tenants, and improves tenants' overall Qo S in cloud data centers. We perform experiments to evaluate the LP-MKP algorithm and demonstrate that it can provide significant gains over other allocation algorithms. 展开更多
关键词 virtual machine allocation cloud data center multiple tenants multiple knapsack problem
原文传递
Resilient Power Systems Operation with Offshore Wind Farms and Cloud Data Centers 被引量:2
5
作者 Shengwei Liu Yuanzheng Li +2 位作者 Xuan Liu Tianyang Zhao Peng Wang 《CSEE Journal of Power and Energy Systems》 SCIE EI CSCD 2023年第6期1985-1998,共14页
To enhance the resilience of power systems with offshore wind farms(OWFs),a proactive scheduling scheme is proposed to unlock the flexibility of cloud data centers(CDCs)responding to uncertain spatial and temporal imp... To enhance the resilience of power systems with offshore wind farms(OWFs),a proactive scheduling scheme is proposed to unlock the flexibility of cloud data centers(CDCs)responding to uncertain spatial and temporal impacts induced by hurricanes.The total life simulation(TLS)is adopted to project the local weather conditions at transmission lines and OWFs,before,during,and after the hurricane.The static power curve of wind turbines(WTs)is used to capture the output of OWFs,and the fragility analysis of transmission-line components is used to formulate the time-varying failure rates of transmission lines.A novel distributionally robust ambiguity set is constructed with a discrete support set,where the impacts of hurricanes are depicted by these supports.To minimize load sheddings and dropping workloads,the spatial and temporal demand response capabilities of CDCs according to task migration and delay tolerance are incorporated into resilient management.The flexibilities of CDC’s power consumption are integrated into a two-stage distributionally robust optimization problem with conditional value at risk(CVaR).Based on Lagrange duality,this problem is reformulated into its deterministic counterpart and solved by a novel decomposition method with hybrid cuts,admitting fewer iterations and a faster convergence rate.The effectiveness of the proposed resilient management strategy is verified through case studies conducted on the modified IEEERTS 24 system,which includes 4 data centers and 5 offshore wind farms. 展开更多
关键词 cloud computing data center decomposition HURRICANE offshore wind farm resilience enhancement total life simulation unit commitment
原文传递
VirtCO:Joint Coflow Scheduling and Virtual Machine Placement in Cloud Data Centers 被引量:2
6
作者 Dian Shen Junzhou Luo +1 位作者 Fang Dong Junxue Zhang 《Tsinghua Science and Technology》 SCIE EI CAS CSCD 2019年第5期630-644,共15页
Cloud data centers, such as Amazon EC2, host myriad big data applications using Virtual Machines(VMs). As these applications are communication-intensive, optimizing network transfer between VMs is critical to the perf... Cloud data centers, such as Amazon EC2, host myriad big data applications using Virtual Machines(VMs). As these applications are communication-intensive, optimizing network transfer between VMs is critical to the performance of these applications and network utilization of data centers. Previous studies have addressed this issue by scheduling network flows with coflow semantics or optimizing VM placement with traffic considerations.However, coflow scheduling and VM placement have been conducted orthogonally. In fact, these two mechanisms are mutually dependent, and optimizing these two complementary degrees of freedom independently turns out to be suboptimal. In this paper, we present VirtCO, a practical framework that jointly schedules coflows and places VMs ahead of VM launch to optimize the overall performance of data center applications. We model the joint coflow scheduling and VM placement optimization problem, and propose effective heuristics for solving it. We further implement VirtCO with OpenStack and deploy it in a testbed environment. Extensive evaluation of real-world traces shows that compared with state-of-the-art solutions, VirtCO greatly reduces the average coflow completion time by up to 36.5%. This new framework is also compatible with and readily deployable within existing data center architectures. 展开更多
关键词 cloud computing data center coflow SCHEDULING Virtual Machine (VM) PLACEMENT
原文传递
Virtual machine placement optimizing to improve network performance in cloud data centers 被引量:3
7
作者 DONG Jian-kang WANG Hong-bo +1 位作者 LI Yang-yang CHENG Shi-duan 《The Journal of China Universities of Posts and Telecommunications》 EI CSCD 2014年第3期62-70,共9页
With the wide application of virtualization technology in cloud data centers, how to effectively place virtual machine (VM) is becoming a major issue for cloud providers. The existing virtual machine placement (VMP... With the wide application of virtualization technology in cloud data centers, how to effectively place virtual machine (VM) is becoming a major issue for cloud providers. The existing virtual machine placement (VMP) solutions are mainly to optimize server resources. However, they pay little consideration on network resources optimization, and they do not concern the impact of the network topology and the current network traffic. A multi-resource constraints VMP scheme is proposed. Firstly, the authors attempt to reduce the total communication traffic in the data center network, which is abstracted as a quadratic assignment problem; and then aim at optimizing network maximum link utilization (MLU). On the condition of slight variation of the total traffic, minimizing MLU can balance network traffic distribution and reduce network congestion hotspots, a classic combinatorial optimization problem as well as NP-hard problem. Ant colony optimization and 2-opt local search are combined to solve the problem. Simulation shows that MLU is decreased by 20%, and the number of hot links is decreased by 37%. 展开更多
关键词 cloud computing data center network virtual machine placement traffic engineering network performance
原文传递
A cost-effective scheme supporting adaptive service migration in cloud data center 被引量:1
8
作者 Bing YU Yanni HAN +2 位作者 Hanning YUAN Xu ZHOU Zhen XU 《Frontiers of Computer Science》 SCIE EI CSCD 2015年第6期875-886,共12页
Cloud computing as an emerging technology promises to provide reliable and available services on de- mand. However, offering services for mobile requirements without dynamic and adaptive migration may hurt the perform... Cloud computing as an emerging technology promises to provide reliable and available services on de- mand. However, offering services for mobile requirements without dynamic and adaptive migration may hurt the performance of deployed services. In this paper, we propose MAMOC, a cost-effective approach for selecting the server and migrating services to attain enhanced QoS more econom- ically. The goal of MAMOC is to minimize the total operating cost while guaranteeing the constraints of resource de- mands, storage capacity, access latency and economies, including selling price and reputation grade. First, we devise an objective optimal model with multi-constraints, describing the relationship among operating cost and the above con- straints. Second, a normalized method is adopted to calculate the operating cost for each candidate VM. Then we give a de- tailed presentation on the online algorithm MAMOC, which determines the optimal server. To evaluate the performance of our proposal, we conducted extensive simulations on three typical network topologies and a realistic data center net- work. Results show that MAMOC is scalable and robust with the larger scales of requests and VMs in cloud environment. Moreover, MAMOC decreases the competitive ratio by identifying the optimal migration paths, while ensuring the constraints of SLA as satisfying as possible. 展开更多
关键词 cloud computing software-defined networking data center service migration QoS
原文传递
Scalability of the DVFS Power Management Technique as Applied to 3-Tier Data Center Architecture in Cloud Computing
9
作者 Sulieman Bani-Ahmad Saleh Sa’adeh 《Journal of Computer and Communications》 2017年第1期69-93,共25页
The increase in computing capacity caused a rapid and sudden increase in the Operational Expenses (OPEX) of data centers. OPEX reduction is a big concern and a key target in modern data centers. In this study, the sca... The increase in computing capacity caused a rapid and sudden increase in the Operational Expenses (OPEX) of data centers. OPEX reduction is a big concern and a key target in modern data centers. In this study, the scalability of the Dynamic Voltage and Frequency Scaling (DVFS) power management technique is studied under multiple different workloads. The environment of this study is a 3-Tier data center. We conducted multiple experiments to find the impact of using DVFS on energy reduction under two scheduling techniques, namely: Round Robin and Green. We observed that the amount of energy reduction varies according to data center load. When the data center load increases, the energy reduction decreases. Experiments using Green scheduler showed around 83% decrease in power consumption when DVFS is enabled and DC is lightly loaded. In case the DC is fully loaded, in which case the servers’ CPUs are constantly busy with no idle time, the effect of DVFS decreases and stabilizes to less than 10%. Experiments using Round Robin scheduler showed less energy saving by DVFS, specifically, around 25% in light DC load and less than 5% in heavy DC load. In order to find the effect of task weight on energy consumption, a set of experiments were conducted through applying thin and fat tasks. A thin task has much less instructions compared to fat tasks. We observed, through the simulation, that the difference in power reduction between both types of tasks when using DVFS is less than 1%. 展开更多
关键词 cloud Computing data centerS Operational EXPENSES Green Technology DVFS Energy Reduction
下载PDF
Towards Attaining Reliable and Efficient Green Cloud Computing Using Micro-Smart Grids to Power Internet Data Center
10
作者 Mohammed Mansur Ibrahim Anas Ahmad Danbala Mustapha Ismail 《Journal of Computer and Communications》 2019年第7期195-205,共11页
Energy generation and consumption are the main aspects of social life due to the fact that modern people’s necessity for energy is a crucial ingredient for existence. Therefore, energy efficiency is regarded as the b... Energy generation and consumption are the main aspects of social life due to the fact that modern people’s necessity for energy is a crucial ingredient for existence. Therefore, energy efficiency is regarded as the best economical approach to provide safer and affordable energy for both utilities and consumers, through the enhancement of energy security and reduction of energy emissions. One of the problems of cloud computing service providers is the high rise in the cost of energy, efficiency together with carbon emission with regards to the running of their internet data centres (IDCs). In order to mitigate these issues, smart micro-grid was found to be suitable in increasing the energy efficiency, sustainability together with the reliability of electrical services for the IDCs. Therefore, this paper presents idea on how smart micro-grids can bring down the disturbing cost of energy, carbon emission by the IDCs with some level of energy efficiency all in an effort to attain green cloud computing services from the service providers. In specific term, we aim at achieving green information and communication technology (ICT) in the field of cloud computing in relations to energy efficiency, cost-effectiveness and carbon emission reduction from cloud data center’s perspective. 展开更多
关键词 cloud Computing INTERNET data center Green IT Energy Efficiency Mi-cro-Smart Grids
下载PDF
Hybrid Cloud Architecture for Higher Education System
11
作者 Omar Nooh Almotiry Mohemmed Sha +1 位作者 Mohamudha Parveen Rahamathulla Omer Salih Dawood Omer 《Computer Systems Science & Engineering》 SCIE EI 2021年第1期1-12,共12页
As technology improves,several modernization efforts are taken in the process of teaching and learning.An effective education system should maintain global connectivity,federate security and deliver self-access to its... As technology improves,several modernization efforts are taken in the process of teaching and learning.An effective education system should maintain global connectivity,federate security and deliver self-access to its services.The cloud computing services transform the current education system to an advanced one.There exist several tools and services to make teaching and learning more interesting.In the higher education system,the data flow and basic operations are almost the same.These systems need to access cloud-based applications and services for their operational advancement and flexibility.Architecting a suitable cloud-based education system will leverage all the benefits of the cloud to its stakeholders.At the same time,educational institutions want to keep their sensitive information more secure.For that,they need to maintain their on-premises data center along with the cloud infrastructure.This paper proposes an advanced,flexible and secure hybrid cloud architecture to satisfy the growing demands of an education system.By sharing the proposed cloud infrastructure among several higher educational institutions,there is a possibility to implement a common education system among organizations.Moreover,this research demonstrates how a cloud-based education architecture can utilize the advantages of the cloud resources offered by several providers in a hybrid cloud environment.In addition,a reference architecture using Amazon Web Service(AWS)is proposed to implement a common university education system. 展开更多
关键词 Educational cloud hybrid cloud cloud services cloud data center cloud education system
下载PDF
基于H3Cloud架构的广播电视云数据中心IT设备层可靠性分析
12
作者 刘卫宏 《电视技术》 2021年第6期5-7,共3页
论述广播电视云数据中心的应用需求,分析基于H3Cloud云架构的广播电视云数据中心的IT设备计算接入层、基础设施层、网络控制与智能保障层以及业务交付层的可靠性技术手段,指出广播电视云数据中心设计和建设过程需要对各层次的可靠性进... 论述广播电视云数据中心的应用需求,分析基于H3Cloud云架构的广播电视云数据中心的IT设备计算接入层、基础设施层、网络控制与智能保障层以及业务交付层的可靠性技术手段,指出广播电视云数据中心设计和建设过程需要对各层次的可靠性进行深入分析和论证,并根据应用需求进行可靠性强化。 展开更多
关键词 云数据中心 虚拟化 可靠性
下载PDF
基于云数据中心的多源异构数据治理技术研究 被引量:2
13
作者 孙瑜 《计算机测量与控制》 2024年第3期286-292,共7页
目前常规的多源异构数据治理方法主要通过对数据属性进行判断,从而实现分区域数据清洗,由于缺乏对非线性数据的分析,导致治理性能不佳;对此,提出基于云数据中心的多源异构数据治理技术;采用关系型数据库中的ETL功能对数据进行清洗,对数... 目前常规的多源异构数据治理方法主要通过对数据属性进行判断,从而实现分区域数据清洗,由于缺乏对非线性数据的分析,导致治理性能不佳;对此,提出基于云数据中心的多源异构数据治理技术;采用关系型数据库中的ETL功能对数据进行清洗,对数据转换模式以及数据清洗规则进行定义;引入互信息系数对数据相关程度进行判定,并进行非线性数据相关性分析;以云数据中心作为载体,对多源异构数据治理体系进行构建;在实验中,对提出的数据治理技术进行了治理性能的检验;最终的实验结果表明,提出的数据治理技术具备较高的查准率,对云数据中心多源异构数据具备较为理想的数据治理效果。 展开更多
关键词 云数据中心 多源异构数据 数据治理 数据清洗
下载PDF
CloudSim中基于优先级的轮询服务代理算法
14
作者 刘君玲 《莆田学院学报》 2014年第5期58-60,共3页
针对服务代理采用的现有数据中心选择算法存在系统性能低和总体成本高等问题,提出一种基于优先级的轮询服务代理算法。该算法对数据中心的优先级进行定义,并根据数据中心的优先级选择数据中心。通过基于CloudSim仿真器的实验,结果证明... 针对服务代理采用的现有数据中心选择算法存在系统性能低和总体成本高等问题,提出一种基于优先级的轮询服务代理算法。该算法对数据中心的优先级进行定义,并根据数据中心的优先级选择数据中心。通过基于CloudSim仿真器的实验,结果证明该算法比现有数据中心选择算法拥有更好的性能。 展开更多
关键词 云计算 优先级 服务代理 轮询 数据中心
下载PDF
高等职业技术学院云机房设计及优势探讨
15
作者 刘召华 《信息与电脑》 2024年第8期7-9,共3页
本文通过分析高等职业技术学院传统机房使用中存在维护工作量大、投资费用高、资源利用低等诸多问题,提出了利用云计算技术来解决传统机房不足之处。通过云机房方案设计,采用分布式存储系统,提出整体架构由基础框架、管理软件、桌面控... 本文通过分析高等职业技术学院传统机房使用中存在维护工作量大、投资费用高、资源利用低等诸多问题,提出了利用云计算技术来解决传统机房不足之处。通过云机房方案设计,采用分布式存储系统,提出整体架构由基础框架、管理软件、桌面控制器、终端接入设备构成,并总结了云机房部署灵活、运维方便、随时教学、安全高效的优势,最后结合实际分析了云机房网络依赖性高、终端处理能力弱、专业性软件适应性差等问题。 展开更多
关键词 云计算 云机房 虚拟机
下载PDF
基于CNN-LSTM神经网络的磁盘故障预测方法
16
作者 彭福康 王恩东 高晓锋 《计算机应用与软件》 北大核心 2024年第6期92-100,149,共10页
运维人员准确预测将要发生的磁盘故障是保障数据安全的关键。然而,不平衡数据、不准确磁盘特性标记影响预测的准确性。提出一种基于预故障重置窗口(pre_Failure Reseting Window,pre_FRW)数据处理并组合卷积神经网络(CNN)和长短期记忆网... 运维人员准确预测将要发生的磁盘故障是保障数据安全的关键。然而,不平衡数据、不准确磁盘特性标记影响预测的准确性。提出一种基于预故障重置窗口(pre_Failure Reseting Window,pre_FRW)数据处理并组合卷积神经网络(CNN)和长短期记忆网络(LSTM),即pre_FRW-CNN-LSTM的磁盘故障预测方法。pre_FRW数据处理既可以解决样本不平衡,又能减少潜在的模糊样本。而CNN-LSTM模型结构能提取数据的空间特征,还能有效捕捉时间序列之间的依赖关系。在真实监控数据集上实验表明,pre_FRW-CNN-LSTM的磁盘故障预测方法对比业界其他方法提升2%~10%的故障预测率,并保持较低的错误告警率。 展开更多
关键词 云数据中心 预故障重置窗口 截断窗口 卷积神经网络 长短期记忆网络 磁盘故障预测
下载PDF
基于冗余分析的数据中心服务器能耗特征选择 被引量:1
17
作者 丰佳 张立志 +1 位作者 宋文 汤洪杰 《微型电脑应用》 2024年第2期115-117,共3页
应用精确的服务器能耗模型对能耗进行预测,可为资源调度方法提供重要依据。考虑到云数据中心服务器能耗特征维度高、冗余特征难以判断的题,分析特征与特征之间、特征与目标值之间皮尔逊相关性系数的联系,并给出服务器能耗冗余特征的判... 应用精确的服务器能耗模型对能耗进行预测,可为资源调度方法提供重要依据。考虑到云数据中心服务器能耗特征维度高、冗余特征难以判断的题,分析特征与特征之间、特征与目标值之间皮尔逊相关性系数的联系,并给出服务器能耗冗余特征的判断准则,在此基础上提出一种基于冗余分析的服务器能耗特征选择算法。实验结果表明了所提能耗特征选择算法在服务器能耗模型构建中的有效性。 展开更多
关键词 云数据中心 服务器 冗余分析 特征选择 能耗预测
下载PDF
面向数据中心安全的密码保障体系研究
18
作者 何智 赵海英 雷波 《信息安全与通信保密》 2024年第1期48-59,共12页
随着国家电子政务和各行业信息化建设工作的稳步推进,数据中心建设需求和发展趋势越来越明显。数据中心融合了云、大数据、信息安全、密码保密、隐私保护等众多技术,如何有效规范数据中心建设,确保数据安全成为当前研究热点之一。围绕... 随着国家电子政务和各行业信息化建设工作的稳步推进,数据中心建设需求和发展趋势越来越明显。数据中心融合了云、大数据、信息安全、密码保密、隐私保护等众多技术,如何有效规范数据中心建设,确保数据安全成为当前研究热点之一。围绕数据中心建设过程中的数据安全管控问题,积极探索并建立以密码技术为核心的数据安全保障体系和安全保障思路,提出基于密码基础设施、信任服务、应用密码服务、网络加密、存储保护等机制的数据安全密码保障技术框架,设计数据安全密码保障流程,为各领域、各行业数字化转型和数据中心建设提供参考。 展开更多
关键词 数据中心 数据安全 密码保障
下载PDF
基于云-边-端协同的区域级风电场大数据中心数据管理框架及优化运行方法
19
作者 张扬帆 王玙 +2 位作者 李阳 沈小军 梁恺 《高电压技术》 EI CAS CSCD 北大核心 2024年第11期5151-5163,共13页
区域级风电场大数据中心面临运行能效低、交互性差、资源重复建设等问题,难以满足数字化特征凸显的新型电力系统对数据实时计算、绿色计算的需求。该文系统性梳理了风电场大数据中心典型数字化业务的类别、算力敏感性特征和可调节潜力,... 区域级风电场大数据中心面临运行能效低、交互性差、资源重复建设等问题,难以满足数字化特征凸显的新型电力系统对数据实时计算、绿色计算的需求。该文系统性梳理了风电场大数据中心典型数字化业务的类别、算力敏感性特征和可调节潜力,构建了基于云-边-端协同技术的数据管理架构,从数据交互、业务执行、资源调度和质量治理4个维度提出了大数据中心优化运行方法。算例仿真分析了所提架构在数据传输、存储和能耗等方面的性能,结果表明:相较于集中式架构,云-边-端协同可为大数据中心云服务器节约350%的存储容量,降低21.04%的能耗,验证了所提架构在实际工程中应用的有效性和合理性。 展开更多
关键词 区域级风电场 大数据中心 数字化业务 云-边-端协同 数据管理架构 优化运行
下载PDF
云数据中心的资源调优方法研究与应用
20
作者 魏富生 张志良 +1 位作者 李玉冰 李鹏飞 《长江信息通信》 2024年第10期214-216,223,共4页
近年来,通信行业云计算业务保持快速增长,云用户及云服务数量持续增加,云数据中心的规模也不断扩大,报告了运维云数据中心的工作中所面临资源利用率不均衡、云主机应用安全认知疏忽等问题的现状。文章通过对目前市场上云数据中心所拥有... 近年来,通信行业云计算业务保持快速增长,云用户及云服务数量持续增加,云数据中心的规模也不断扩大,报告了运维云数据中心的工作中所面临资源利用率不均衡、云主机应用安全认知疏忽等问题的现状。文章通过对目前市场上云数据中心所拥有的相关技术进行了研究,提出在现网环境下解决以上现状问题的思路与方法,通过实践应用目前现网环境针对以上问题提升了百分之八十的显著效果,因此运维人员能联系实际运维情况,更好的解决云数据中心IaaS层、PaaS层的相关资源调优与维护问题。 展开更多
关键词 云数据中心 运维 利用率不均衡 安全认识疏忽 调优与维护
下载PDF
上一页 1 2 42 下一页 到第
使用帮助 返回顶部