Environmental conditions can change markedly over geographical distances along elevation gradients,making them natural laboratories to study the processes that structure communities.This work aimed to assess the influ...Environmental conditions can change markedly over geographical distances along elevation gradients,making them natural laboratories to study the processes that structure communities.This work aimed to assess the influences of elevation on Tropical Montane Cloud Forest plant communities in the Brazilian Atlantic Forest,a historically neglected ecoregion.We evaluated the phylogenetic structure,forest structure(tree basal area and tree density)and species richness along an elevation gradient,as well as the evolutionary fingerprints of elevation-success on phylogenetic lineages from the tree communities.To do so,we assessed nine communities along an elevation gradient from 1210 to 2310 m a.s.l.without large elevation gaps.The relationships between elevation and phylogenetic structure,forest structure and species richness were investigated through Linear Models.The occurrence of evolutionary fingerprint on phylogenetic lineages was investigated by quantifying the extent of phylogenetic signal of elevation-success using a genus-level molecular phylogeny.Our results showed decreased species richness at higher elevations and independence between forest structure,phylogenetic structure and elevation.We also verified that there is a phylogenetic signal associated with elevation-success by lineages.We concluded that the elevation is associated with species richness and the occurrence of phylogenetic lineages in the tree communities evaluated in Mantiqueira Range.On the other hand,elevation is not associated with forest structure or phylogenetic structure.Furthermore,closely related taxa tend to have their higher ecological success in similar elevations.Finally,we highlight the fragility of the tropical montane cloud forests in the Mantiqueira Range in face of environmental changes(i.e.global warming)due to the occurrence of exclusive phylogenetic lineages evolutionarily adapted to environmental conditions(i.e.minimum temperature)associated with each elevation range.展开更多
We studied the influence of east and west aspects on floristic composition, diversity, structure and treeline of afromontane cloud forests at Rira in the Bale Mountains, southeast Ethiopia. In addition, we studied how...We studied the influence of east and west aspects on floristic composition, diversity, structure and treeline of afromontane cloud forests at Rira in the Bale Mountains, southeast Ethiopia. In addition, we studied how aspect relates to and/or interacts with other topographic and edaphic factors in influencing vegetation diversity. Strati- fied systematic plot sampling was used to survey the floristic composition, diversity and structure of forests on east- and west-facing slopes. The sample plot size was 20 x 20 m and a total of 36 plots were inventoried. A total of 72 composite soil samples were collected and analysed. Woody species richness of the forest on the east-facing slope was 1.7 times higher than on the west-facing slope. Shannon, Simpson and Log-series alpha diversity indices and evenness of forests on the east-facing slope were sig- nificantly higher than on the west-facing slope. NMDS ordination indicated that the east- and west-facing slopes formed two clusters of species and aspect explained 55.2 % and 10.4 % of the variation in species richness and abun- dance, respectively. There was no significant difference between aspects in stand structure except in dominantheight, which was higher on the east-facing slopes. There was significant interaction between aspect and elevation in influencing woody species diversity. The four plant com- munity groups, which were identified using cluster and indicator species analysis were represented differently on the east and west aspects. The treeline on the east-facing slope (3352 m) was located about 110 m higher than on the west-facing slope (3240 m). Soil moisture deficiency was unlikely to be a limiting factor on either site. Near the equator, east-west aspect was shown to have considerable impact on floristic composition, diversity, structure, and treeline position of montane forests. Diurnal cloud move- ment patterns and its impact on microclimate of slope aspect should be taken into account in future studies of cloud forest diversity, structure, and treeline position.展开更多
Tropical montane cloud forest is one of the ecosystems with the highest biomass worldwide, representing an important carbon store. Globally its deforestation index is –1.1%, but in Mexico it is higher than –3%. Carb...Tropical montane cloud forest is one of the ecosystems with the highest biomass worldwide, representing an important carbon store. Globally its deforestation index is –1.1%, but in Mexico it is higher than –3%. Carbon estimates are scarce globally, particularly in Mexico. The objective of this study was to simulate future land-cover scenarios for the Sierra Madre Oriental in Mexico, by analyzing past forest cover changes. Another objective was to estimate stored carbon in the two study areas. These objectives involve the generation of information that could be useful inputs to anti-deforestation public policy such as the REDD+ strategy. Remote sensing was used to measure land cover change and estimate carbon stocks. Satellite images from 2015, 2000 and 1986 were used, and Dinamica EGO freeware generatedmodels of future projections. Between 1986 and 2015, 5171 ha of forest were converted to pasture. The annual deforestation rates were –1.5% for Tlanchinol and –1.3% for the San Bartolo Tutotepec sites. Distance to roads and marginalization were highly correlated with deforestation. By 2030, an estimated 3608 ha of forest in these sites will have been converted to pasture. Stored carbon was estimated at 16.35 Mg C ha-1 for the Tlanchinol site and 12.7 Mg C ha-1 for the San Bartolo site. In the Sierra Madre Oriental deforestation due to land cover change(–1.4%) is higher than levels reported worldwide. Besides having high values of stored carbon(14.5 Mg C ha-1), these forests have high biodiversity. The models' outputs show that the deforestation process will continue if action is not taken to avoid the expansion of livestock pasturing. This can be done by paying incentives for forest conservation to the owners of the land. The results suggest that REDD+ is currently the most viable strategy for reducing deforestation rates in tropical montane cloud forests in Sierra Madre Oriental.展开更多
We investigated the effects of land-use changes on soil carbon storage and soil CO2 flux by comparing soils from mature cloud forest and 31-year-old secondary forest, both in the Santa Elena Forest Reserve, a municipa...We investigated the effects of land-use changes on soil carbon storage and soil CO2 flux by comparing soils from mature cloud forest and 31-year-old secondary forest, both in the Santa Elena Forest Reserve, a municipallyowned reserve at an elevation of 1600 to 1700 m near the town of Monteverde, and a clear-cut pasture near the reserve. Soils in the mature forest exhibit only weak horizonation but typically thick A horizons;they also consistently yield the highest carbon contents in the upper 30 cm. Soil CO2 flux was the highest in these soils, but also displayed the highest spatial variability. Secondary forest soils contain substantially less soil carbon than mature forest soils, but more than pasture soils. CO2 flux in the secondary forest soils was more similar to that of the mature forest, but displayed lower spatial variability. The pasture soils contain less soil carbon and produced lower CO2 flux levels than either of the forest soils. The pasture soils typically contain a well-defined coarse sandy layer 10 to 20 cm below the surface that we interpret as a sediment layer deposited across much of the landscape following a widespread erosion event, likely a consequence of the clear-cutting. Soil nitrogen concentrations are more than an order of magnitude lower than soil carbon concentrations, and display no trends between the different landscapes examined. Our preliminary results suggest that reforestation does restore soil carbon to clear-cut landscapes, but returning soil carbon levels to pre-land use levels occurs at a time scale of centuries, rather than decades.展开更多
【目的】林木参数是森林蓄积量、森林生物量估算的基础指标,传统的人工调查方式费时费力,已难以适应新形势下数字化森林资源监测技术的要求。地面激光雷达扫描技术能够获取小尺度高分辨率的林分内部结构信息,为林分环境条件下林木胸径...【目的】林木参数是森林蓄积量、森林生物量估算的基础指标,传统的人工调查方式费时费力,已难以适应新形势下数字化森林资源监测技术的要求。地面激光雷达扫描技术能够获取小尺度高分辨率的林分内部结构信息,为林分环境条件下林木胸径、树高提取提供一种新的思路。【方法】以芦头实验林场杉木林样地为研究对象,针对FARO Focus 3D X330三维激光扫描仪设计了7种不同的扫描组合方式对样地进行扫描,提出象限角点云简化思路进行参数提取和精度评价,探究不同扫描组合方式对林木胸径、树高参数提取精度与效率的影响。【结果】1)当扫描分辨率为1/2、质量为4X时,胸径参数提取精度最高;当扫描分辨率为1/4、质量为4X时,树高参数提取精度最高。2)在林木参数提取结果没有显著性差异的前提下,扫描分辨率为1/4、质量为4X的扫描参数工作效率最高。3)选取同时兼顾精度和效率的1/4扫描分辨率、质量4X的扫描结果,进行象限角点云简化,简化的点云能够准确地提取出林木胸径参数。【结论】研究结果对于具有相同或相似地理条件和树种的林地选择扫描参数和点云简化方式具有重要参考价值,可以提高内业工作效率,同时也为地面激光雷达野外样地调查提供方法和技术参考。展开更多
The Andean forests of northern Ecuador are known for their high levels of plant diversity relative to the area they occupy.Typically,these forests grow on steep slopes that lead to dramatic habitat gradients across sh...The Andean forests of northern Ecuador are known for their high levels of plant diversity relative to the area they occupy.Typically,these forests grow on steep slopes that lead to dramatic habitat gradients across short distances.These extreme habitat gradients make the Andean forest ecosystem an excellent natural laboratory for understanding the effect of elevation on forest community diversity,structure and composition.We established 31 plots(50 m×5 m)which are divided between two elevational transects in the cloud forest of the Siempre Verde Reserve in the western foothills of the Andes Mountains of northern Ecuador.All trees and tree ferns with a diameter at breast height(dbh)≥5 cm were measured and identified.We examined changes in community composition,structure,and diversity along and between the elevational transects and three elevational zones:low(2437–2700 m),middle(2756–3052 m),and high(3163–3334 m).We found four main trends associated with the elevational gradients at this site:(1)community composition differed between the two transects and among the three elevational zones according to N-MDS,ANOSIM,and percentage of shared species,with some species having limited distributions,(2)metrics of community structure showed opposite relationships with elevation,depending on the transect,with the only significant relationship(negative)found between basal area and elevation in the open trail transect,(3)alpha diversity,in general,peaked at mid-elevations,and(4)beta diversity consistently increased with distance between plots along elevation.The complexity of changes in community composition,structure,and alpha diversity along elevation may be related to the heterogeneity of the environment on a local scale,such as topography,soil composition,and even human impact,or to dispersal limitation and should be investigated further.These changes in community composition and the relatively high beta diversity found at this site exemplify the biological complexity of montane forest,reinforcing arguments from other studies on the importance of their conservation.展开更多
Background:Tropical montane cloud forests are one of the most important hotspots on Earth and show presence of relict-endemic and endangered species,representing about 14%of the total tropical forest worldwide.Synchro...Background:Tropical montane cloud forests are one of the most important hotspots on Earth and show presence of relict-endemic and endangered species,representing about 14%of the total tropical forest worldwide.Synchronous seed production or masting in tropical montane cloud tree species is a widespread reproductive strategy of decidu-ous and evergreen broad-leaved tree associations to decrease costs of reproduction and ensure offspring.Masting event maintains a high avian diversity,which can be modified by phenological process(seed production and non-seed production).Methods:The main aim of this study was to assess alpha and beta avian diversity and whether the composition of the trophic guild modifies among phenological processes and between two fragmented relict-endangered Mexican Beech(Fagus grandifolia subsp.mexicana)forests(Medio Monte and El Gosco)in the Mexican state of Hidalgo.In addi-tion,we evaluated beechnut production.Results:We recorded 36 bird species,11 of them included in some conservation risk status,and 5 endemic species.Alpha diversity values were dissimilar in avian richness(q=0)among phenological processes and between frag-mented beech forests.Avian communities among three phenological processes and between fragmented forests were structurally similar,dominated during immature seeds the Brown-backed Solitaire(granivores-insectivores-frugivores);during mature seeds the White-crowned Parrot(Pionus senilis,granivores-frugivores);and the Dwarf Jay(Cyanolyca nana,insectivores)was abundant during low seed quality.The complementarity index was high among phenological processes and low between forests.We found a high bird turnover value between immature seeds—mature seeds and during mature seeds—low seed quality.Furthermore,a similar pattern was recorded between the two study forests.Seed production showed a high number of undamaged beechnuts in Medio Monte,while in El Gosco beechnuts were attacked by insects.Conclusions:Our results reflect that masting phenological process and contrasting study forests'structure influence the shifts in alpha and beta diversity of seed and non-seed bird consumers.Our study reaffirms the importance of continuing studies throughout masting in all the Mexican Beech forests to address regional efforts in preserving the relict-ecological interactions.展开更多
基金supported this work by granting the doctoral scholarship to Ravi Fernandes Mariano,Carolina Njaime Mendes and Cléber Rodrigo de Souza,and through the master’s scholarship to Aloysio Souza de Mourathe postdoctoral scholarship to Vanessa Leite Rezende+2 种基金The authors also thank the Conselho Nacional de Desenvolvimento Científico e Tecnológico(CNPQ)by project funding(Edital Universal 2014,Process 459739/2014-0)the Instituto Alto-Montana da Serra Fina,the Fundação de AmparoàPesquisa do Estado de Minas Gerais(FAPEMIG)the Fundação Grupo Boticário de ProteçãoàNatureza,and finally the Fundo de Recuperação,Proteção e Desenvolvimento Sustentável das Bacias Hidrográficas do Estado de Minas Gerais(Fhidro).
文摘Environmental conditions can change markedly over geographical distances along elevation gradients,making them natural laboratories to study the processes that structure communities.This work aimed to assess the influences of elevation on Tropical Montane Cloud Forest plant communities in the Brazilian Atlantic Forest,a historically neglected ecoregion.We evaluated the phylogenetic structure,forest structure(tree basal area and tree density)and species richness along an elevation gradient,as well as the evolutionary fingerprints of elevation-success on phylogenetic lineages from the tree communities.To do so,we assessed nine communities along an elevation gradient from 1210 to 2310 m a.s.l.without large elevation gaps.The relationships between elevation and phylogenetic structure,forest structure and species richness were investigated through Linear Models.The occurrence of evolutionary fingerprint on phylogenetic lineages was investigated by quantifying the extent of phylogenetic signal of elevation-success using a genus-level molecular phylogeny.Our results showed decreased species richness at higher elevations and independence between forest structure,phylogenetic structure and elevation.We also verified that there is a phylogenetic signal associated with elevation-success by lineages.We concluded that the elevation is associated with species richness and the occurrence of phylogenetic lineages in the tree communities evaluated in Mantiqueira Range.On the other hand,elevation is not associated with forest structure or phylogenetic structure.Furthermore,closely related taxa tend to have their higher ecological success in similar elevations.Finally,we highlight the fragility of the tropical montane cloud forests in the Mantiqueira Range in face of environmental changes(i.e.global warming)due to the occurrence of exclusive phylogenetic lineages evolutionarily adapted to environmental conditions(i.e.minimum temperature)associated with each elevation range.
基金financially supported by the Department of Forest Sciences,University of Helsinki
文摘We studied the influence of east and west aspects on floristic composition, diversity, structure and treeline of afromontane cloud forests at Rira in the Bale Mountains, southeast Ethiopia. In addition, we studied how aspect relates to and/or interacts with other topographic and edaphic factors in influencing vegetation diversity. Strati- fied systematic plot sampling was used to survey the floristic composition, diversity and structure of forests on east- and west-facing slopes. The sample plot size was 20 x 20 m and a total of 36 plots were inventoried. A total of 72 composite soil samples were collected and analysed. Woody species richness of the forest on the east-facing slope was 1.7 times higher than on the west-facing slope. Shannon, Simpson and Log-series alpha diversity indices and evenness of forests on the east-facing slope were sig- nificantly higher than on the west-facing slope. NMDS ordination indicated that the east- and west-facing slopes formed two clusters of species and aspect explained 55.2 % and 10.4 % of the variation in species richness and abun- dance, respectively. There was no significant difference between aspects in stand structure except in dominantheight, which was higher on the east-facing slopes. There was significant interaction between aspect and elevation in influencing woody species diversity. The four plant com- munity groups, which were identified using cluster and indicator species analysis were represented differently on the east and west aspects. The treeline on the east-facing slope (3352 m) was located about 110 m higher than on the west-facing slope (3240 m). Soil moisture deficiency was unlikely to be a limiting factor on either site. Near the equator, east-west aspect was shown to have considerable impact on floristic composition, diversity, structure, and treeline position of montane forests. Diurnal cloud move- ment patterns and its impact on microclimate of slope aspect should be taken into account in future studies of cloud forest diversity, structure, and treeline position.
基金support with doctorate fellowship CONACy T(No.266708)Postgraduate Sciences in Biodiversity and Conservation of the Center for Biological Research,UAEH
文摘Tropical montane cloud forest is one of the ecosystems with the highest biomass worldwide, representing an important carbon store. Globally its deforestation index is –1.1%, but in Mexico it is higher than –3%. Carbon estimates are scarce globally, particularly in Mexico. The objective of this study was to simulate future land-cover scenarios for the Sierra Madre Oriental in Mexico, by analyzing past forest cover changes. Another objective was to estimate stored carbon in the two study areas. These objectives involve the generation of information that could be useful inputs to anti-deforestation public policy such as the REDD+ strategy. Remote sensing was used to measure land cover change and estimate carbon stocks. Satellite images from 2015, 2000 and 1986 were used, and Dinamica EGO freeware generatedmodels of future projections. Between 1986 and 2015, 5171 ha of forest were converted to pasture. The annual deforestation rates were –1.5% for Tlanchinol and –1.3% for the San Bartolo Tutotepec sites. Distance to roads and marginalization were highly correlated with deforestation. By 2030, an estimated 3608 ha of forest in these sites will have been converted to pasture. Stored carbon was estimated at 16.35 Mg C ha-1 for the Tlanchinol site and 12.7 Mg C ha-1 for the San Bartolo site. In the Sierra Madre Oriental deforestation due to land cover change(–1.4%) is higher than levels reported worldwide. Besides having high values of stored carbon(14.5 Mg C ha-1), these forests have high biodiversity. The models' outputs show that the deforestation process will continue if action is not taken to avoid the expansion of livestock pasturing. This can be done by paying incentives for forest conservation to the owners of the land. The results suggest that REDD+ is currently the most viable strategy for reducing deforestation rates in tropical montane cloud forests in Sierra Madre Oriental.
文摘We investigated the effects of land-use changes on soil carbon storage and soil CO2 flux by comparing soils from mature cloud forest and 31-year-old secondary forest, both in the Santa Elena Forest Reserve, a municipallyowned reserve at an elevation of 1600 to 1700 m near the town of Monteverde, and a clear-cut pasture near the reserve. Soils in the mature forest exhibit only weak horizonation but typically thick A horizons;they also consistently yield the highest carbon contents in the upper 30 cm. Soil CO2 flux was the highest in these soils, but also displayed the highest spatial variability. Secondary forest soils contain substantially less soil carbon than mature forest soils, but more than pasture soils. CO2 flux in the secondary forest soils was more similar to that of the mature forest, but displayed lower spatial variability. The pasture soils contain less soil carbon and produced lower CO2 flux levels than either of the forest soils. The pasture soils typically contain a well-defined coarse sandy layer 10 to 20 cm below the surface that we interpret as a sediment layer deposited across much of the landscape following a widespread erosion event, likely a consequence of the clear-cutting. Soil nitrogen concentrations are more than an order of magnitude lower than soil carbon concentrations, and display no trends between the different landscapes examined. Our preliminary results suggest that reforestation does restore soil carbon to clear-cut landscapes, but returning soil carbon levels to pre-land use levels occurs at a time scale of centuries, rather than decades.
文摘【目的】林木参数是森林蓄积量、森林生物量估算的基础指标,传统的人工调查方式费时费力,已难以适应新形势下数字化森林资源监测技术的要求。地面激光雷达扫描技术能够获取小尺度高分辨率的林分内部结构信息,为林分环境条件下林木胸径、树高提取提供一种新的思路。【方法】以芦头实验林场杉木林样地为研究对象,针对FARO Focus 3D X330三维激光扫描仪设计了7种不同的扫描组合方式对样地进行扫描,提出象限角点云简化思路进行参数提取和精度评价,探究不同扫描组合方式对林木胸径、树高参数提取精度与效率的影响。【结果】1)当扫描分辨率为1/2、质量为4X时,胸径参数提取精度最高;当扫描分辨率为1/4、质量为4X时,树高参数提取精度最高。2)在林木参数提取结果没有显著性差异的前提下,扫描分辨率为1/4、质量为4X的扫描参数工作效率最高。3)选取同时兼顾精度和效率的1/4扫描分辨率、质量4X的扫描结果,进行象限角点云简化,简化的点云能够准确地提取出林木胸径参数。【结论】研究结果对于具有相同或相似地理条件和树种的林地选择扫描参数和点云简化方式具有重要参考价值,可以提高内业工作效率,同时也为地面激光雷达野外样地调查提供方法和技术参考。
基金Pontificia Universidad Católica del Ecuador-Herbario QCA project“Fortalecimiento de la colección del Herbario QCA mediante inventarios botánicos enáreas de vacío de información florística,código K13-056”Siempre Verde Cloud Forest Reserve+1 种基金Columbus State Universitythe Lovett School for financial and logistic support。
文摘The Andean forests of northern Ecuador are known for their high levels of plant diversity relative to the area they occupy.Typically,these forests grow on steep slopes that lead to dramatic habitat gradients across short distances.These extreme habitat gradients make the Andean forest ecosystem an excellent natural laboratory for understanding the effect of elevation on forest community diversity,structure and composition.We established 31 plots(50 m×5 m)which are divided between two elevational transects in the cloud forest of the Siempre Verde Reserve in the western foothills of the Andes Mountains of northern Ecuador.All trees and tree ferns with a diameter at breast height(dbh)≥5 cm were measured and identified.We examined changes in community composition,structure,and diversity along and between the elevational transects and three elevational zones:low(2437–2700 m),middle(2756–3052 m),and high(3163–3334 m).We found four main trends associated with the elevational gradients at this site:(1)community composition differed between the two transects and among the three elevational zones according to N-MDS,ANOSIM,and percentage of shared species,with some species having limited distributions,(2)metrics of community structure showed opposite relationships with elevation,depending on the transect,with the only significant relationship(negative)found between basal area and elevation in the open trail transect,(3)alpha diversity,in general,peaked at mid-elevations,and(4)beta diversity consistently increased with distance between plots along elevation.The complexity of changes in community composition,structure,and alpha diversity along elevation may be related to the heterogeneity of the environment on a local scale,such as topography,soil composition,and even human impact,or to dispersal limitation and should be investigated further.These changes in community composition and the relatively high beta diversity found at this site exemplify the biological complexity of montane forest,reinforcing arguments from other studies on the importance of their conservation.
基金granted by the postdoctoral fellowship CONACYT 2019–2020funded by the DGAPA PAPIIT IN220621 project
文摘Background:Tropical montane cloud forests are one of the most important hotspots on Earth and show presence of relict-endemic and endangered species,representing about 14%of the total tropical forest worldwide.Synchronous seed production or masting in tropical montane cloud tree species is a widespread reproductive strategy of decidu-ous and evergreen broad-leaved tree associations to decrease costs of reproduction and ensure offspring.Masting event maintains a high avian diversity,which can be modified by phenological process(seed production and non-seed production).Methods:The main aim of this study was to assess alpha and beta avian diversity and whether the composition of the trophic guild modifies among phenological processes and between two fragmented relict-endangered Mexican Beech(Fagus grandifolia subsp.mexicana)forests(Medio Monte and El Gosco)in the Mexican state of Hidalgo.In addi-tion,we evaluated beechnut production.Results:We recorded 36 bird species,11 of them included in some conservation risk status,and 5 endemic species.Alpha diversity values were dissimilar in avian richness(q=0)among phenological processes and between frag-mented beech forests.Avian communities among three phenological processes and between fragmented forests were structurally similar,dominated during immature seeds the Brown-backed Solitaire(granivores-insectivores-frugivores);during mature seeds the White-crowned Parrot(Pionus senilis,granivores-frugivores);and the Dwarf Jay(Cyanolyca nana,insectivores)was abundant during low seed quality.The complementarity index was high among phenological processes and low between forests.We found a high bird turnover value between immature seeds—mature seeds and during mature seeds—low seed quality.Furthermore,a similar pattern was recorded between the two study forests.Seed production showed a high number of undamaged beechnuts in Medio Monte,while in El Gosco beechnuts were attacked by insects.Conclusions:Our results reflect that masting phenological process and contrasting study forests'structure influence the shifts in alpha and beta diversity of seed and non-seed bird consumers.Our study reaffirms the importance of continuing studies throughout masting in all the Mexican Beech forests to address regional efforts in preserving the relict-ecological interactions.