The rapid expansion of the Internet of Things (IoT) has driven the need for advanced computational frameworks capable of handling the complex data processing and security challenges that modern IoT applications demand...The rapid expansion of the Internet of Things (IoT) has driven the need for advanced computational frameworks capable of handling the complex data processing and security challenges that modern IoT applications demand. However, traditional cloud computing frameworks face significant latency, scalability, and security issues. Quantum-Edge Cloud Computing (QECC) offers an innovative solution by integrating the computational power of quantum computing with the low-latency advantages of edge computing and the scalability of cloud computing resources. This study is grounded in an extensive literature review, performance improvements, and metrics data from Bangladesh, focusing on smart city infrastructure, healthcare monitoring, and the industrial IoT sector. The discussion covers vital elements, including integrating quantum cryptography to enhance data security, the critical role of edge computing in reducing response times, and cloud computing’s ability to support large-scale IoT networks with its extensive resources. Through case studies such as the application of quantum sensors in autonomous vehicles, the practical impact of QECC is demonstrated. Additionally, the paper outlines future research opportunities, including developing quantum-resistant encryption techniques and optimizing quantum algorithms for edge computing. The convergence of these technologies in QECC has the potential to overcome the current limitations of IoT frameworks, setting a new standard for future IoT applications.展开更多
In many IIoT architectures,various devices connect to the edge cloud via gateway systems.For data processing,numerous data are delivered to the edge cloud.Delivering data to an appropriate edge cloud is critical to im...In many IIoT architectures,various devices connect to the edge cloud via gateway systems.For data processing,numerous data are delivered to the edge cloud.Delivering data to an appropriate edge cloud is critical to improve IIoT service efficiency.There are two types of costs for this kind of IoT network:a communication cost and a computing cost.For service efficiency,the communication cost of data transmission should be minimized,and the computing cost in the edge cloud should be also minimized.Therefore,in this paper,the communication cost for data transmission is defined as the delay factor,and the computing cost in the edge cloud is defined as the waiting time of the computing intensity.The proposed method selects an edge cloud that minimizes the total cost of the communication and computing costs.That is,a device chooses a routing path to the selected edge cloud based on the costs.The proposed method controls the data flows in a mesh-structured network and appropriately distributes the data processing load.The performance of the proposed method is validated through extensive computer simulation.When the transition probability from good to bad is 0.3 and the transition probability from bad to good is 0.7 in wireless and edge cloud states,the proposed method reduced both the average delay and the service pause counts to about 25%of the existing method.展开更多
On a macroscopic level,an edge computing architecture looks like a distributed and decentralized IT(Information Technology)architecture.More in detail,it could be defined as a mesh network of micro data centers capabl...On a macroscopic level,an edge computing architecture looks like a distributed and decentralized IT(Information Technology)architecture.More in detail,it could be defined as a mesh network of micro data centers capable of processing and storing critical data locally,and to transmit all data received and/or processed to a central data center or a cloud storage repository.This network topology,also taking advantage of the availability on the market of cost-effective small form factor(SFF)electronic components and systems decreasing,brings the essential components of processing,storage,and networking closer to the sources that generate the data.The typical use case is that of Internet of Things(IoT)devices and implementations,which often face latency problems,lack of bandwidth,reliability,which cannot be addressed through the conventional cloud model.In this context,the edge computing architecture can reduce the size of data to be sent to the cloud,processing critical data,sensitive to latency,at the point of origin,via a smart device,or sending it to an intermediate server,located nearby.The aim of this paper is to report some of the main aspects and significant features of edge computing and analyzing several popular case studies.展开更多
Numerous Internet of Things(IoT)systems produce massive volumes of information that must be handled and answered in a quite short period.The growing energy usage related to the migration of data into the cloud is one ...Numerous Internet of Things(IoT)systems produce massive volumes of information that must be handled and answered in a quite short period.The growing energy usage related to the migration of data into the cloud is one of the biggest problems.Edge computation helps users unload the workload again from cloud near the source of the information that must be handled to save time,increase security,and reduce the congestion of networks.Therefore,in this paper,Optimized Energy Efficient Strategy(OEES)has been proposed for extracting,distributing,evaluating the data on the edge devices.In the initial stage of OEES,before the transmission state,the data gathered from edge devices are supported by a fast error like reduction that is regarded as the largest energy user of an IoT system.The initial stage is followed by the reconstructing and the processing state.The processed data is transmitted to the nodes through controlled deep learning techniques.The entire stage of data collection,transmission and data reduction between edge devices uses less energy.The experimental results indicate that the volume of data transferred decreases and does not impact the professional data performance and predictive accuracy.Energy consumption of 7.38 KJ and energy conservation of 55.57 kJ was found in the proposed OEES scheme.Predictive accuracy is 97.5 percent,data performance rate was 97.65 percent,and execution time is 14.49 ms.展开更多
Ubiquitous data monitoring and processing with minimal latency is one of the crucial challenges in real-time and scalable applications.Internet of Things(IoT),fog computing,edge computing,cloud computing,and the edge ...Ubiquitous data monitoring and processing with minimal latency is one of the crucial challenges in real-time and scalable applications.Internet of Things(IoT),fog computing,edge computing,cloud computing,and the edge of things are the spine of all real-time and scalable applications.Conspicuously,this study proposed a novel framework for a real-time and scalable application that changes dynamically with time.In this study,IoT deployment is recommended for data acquisition.The Pre-Processing of data with local edge and fog nodes is implemented in this study.The thresholdoriented data classification method is deployed to improve the intrusion detection mechanism’s performance.The employment of machine learningempowered intelligent algorithms in a distributed manner is implemented to enhance the overall response rate of the layered framework.The placement of respondent nodes near the framework’s IoT layer minimizes the network’s latency.For economic evaluation of the proposed framework with minimal efforts,EdgeCloudSim and FogNetSim++simulation environments are deployed in this study.The experimental results confirm the robustness of the proposed system by its improvised threshold-oriented data classification and intrusion detection approach,improved response rate,and prediction mechanism.Moreover,the proposed layered framework provides a robust solution for real-time and scalable applications that changes dynamically with time.展开更多
The Industrial Internet is a promising technology combining industrial systems with Internet connectivity to significantly improve the product efficiency and reduce production cost by cooperating with intelligent devi...The Industrial Internet is a promising technology combining industrial systems with Internet connectivity to significantly improve the product efficiency and reduce production cost by cooperating with intelligent devices,in which the advanced computing,big data analysis and intelligent perception techniques have been involved.This paper comprehensively surveys the recent advances of the Industrial Internet,including reference architectures,key technologies,relative applications and future challenges.Reference architectures which have been proposed for different application scenarios and their corresponding characteristics are summarized.Key technologies,such as cloud computing,mobile edge computing,fog computing,which are classified according to different layers in the architecture,are presented to support a variety of applications in the Industrial Internet.Meanwhile,future challenges and research trends are discussed as well to promote further research of the Industrial Internet.展开更多
Determining how to structure vehicular network environments can be done in various ways.Here,we highlight vehicle networks’evolution from vehicular ad-hoc networks(VANET)to the internet of vehicles(Io Vs),listing the...Determining how to structure vehicular network environments can be done in various ways.Here,we highlight vehicle networks’evolution from vehicular ad-hoc networks(VANET)to the internet of vehicles(Io Vs),listing their benefits and limitations.We also highlight the reasons in adopting wireless technologies,in particular,IEEE 802.11 p and 5 G vehicle-toeverything,as well as the use of paradigms able to store and analyze a vast amount of data to produce intelligence and their applications in vehicular environments.We also correlate the use of each of these paradigms with the desire to meet existing intelligent transportation systems’requirements.The presentation of each paradigm is given from a historical and logical standpoint.In particular,vehicular fog computing improves on the deficiences of vehicular cloud computing,so both are not exclusive from the application point of view.We also emphasize some security issues that are linked to the characteristics of these paradigms and vehicular networks,showing that they complement each other and share problems and limitations.As these networks still have many opportunities to grow in both concept and application,we finally discuss concepts and technologies that we believe are beneficial.Throughout this work,we emphasize the crucial role of these concepts for the well-being of humanity.展开更多
The concept of Internet of Everything is like a revolutionary storm,bringing the whole society closer together.Internet of Things(IoT)has played a vital role in the process.With the rise of the concept of Industry 4.0...The concept of Internet of Everything is like a revolutionary storm,bringing the whole society closer together.Internet of Things(IoT)has played a vital role in the process.With the rise of the concept of Industry 4.0,intelligent transformation is taking place in the industrial field.As a new concept,an industrial IoT system has also attracted the attention of industry and academia.In an actual industrial scenario,a large number of devices will generate numerous industrial datasets.The computing efficiency of an industrial IoT system is greatly improved with the help of using either cloud computing or edge computing.However,privacy issues may seriously harmed interests of users.In this article,we summarize privacy issues in a cloud-or an edge-based industrial IoT system.The privacy analysis includes data privacy,location privacy,query and identity privacy.In addition,we also review privacy solutions when applying software defined network and blockchain under the above two systems.Next,we analyze the computational complexity and privacy protection performance of these solutions.Finally,we discuss open issues to facilitate further studies.展开更多
Social networks(SNs)are sources with extreme number of users around the world who are all sharing data like images,audio,and video to their friends using IoT devices.This concept is the so-called Social Internet of Th...Social networks(SNs)are sources with extreme number of users around the world who are all sharing data like images,audio,and video to their friends using IoT devices.This concept is the so-called Social Internet of Things(SIot).The evolving nature of edge-cloud computing has enabled storage of a large volume of data from various sources,and this task demands an efficient storage procedure.For this kind of large volume of data storage,the usage of data replication using edge with geo-distributed cloud service area is suited to fulfill the user’s expectations with low latency.The major issue is the way to store the data and replicate these large data items optimally and allocate the request from the data center efficiently.For efficient storage of these data,we use edge server,which is part of the cloud server,in this study.Thus,the data are distributed and stored with quick access,which will reduce the latency with response.The proposed data placement approach learns with machine learning(ML)algorithm called radial basis kernel function assisted with support vector machine(RBF-SVM)to classify the data center for storing the user and friend’s data from the SIoT devices.These learning algorithms will be used to predict the workload of the data stored in the data center as either edge or cloud depending on the existing time slots.The data placement with dynamic nature is also optimized using the proposed dynamic graph partitioning(GP)method to meet the individual user’s demand of low latency with minimum costs.This way will keep the SIoT data placement efficient and effective over time.Accordingly,this proposed data placement and replication approach introduces three kinds of innovations compared with the existing data placement approach.(i)Rather than storing the user data in a single cloud,this study uses the edge server closest to the SIoT devices for faster access with reduced response time.(ii)The classification algorithm called RBF-SVM is used to find storage for user for reducing data replication.(iii)Dynamic GP is introduced for data placement with reduced latency and minimum cost to fulfil the dynamic nature of the SN.The simulation result of this approach obtains reduced latency of 130 ms and minimum cost compared with those of the existing data placement approaches.Therefore,our proposed data placement with ML-based learning on edge provides promising results in terms of efficiency,effectiveness,and performance with reduced latency and minimum cost.展开更多
现有区域能源互联网(regional energy internet,REI)呈现出多维度、多主体的运行特征,若采用传统集中式云端服务架构,系统易引发高延迟、云爆炸等问题。为此,提出一种边云协同架构及其优化策略。首先,建立REI的数学模型;其次,以REI为分...现有区域能源互联网(regional energy internet,REI)呈现出多维度、多主体的运行特征,若采用传统集中式云端服务架构,系统易引发高延迟、云爆炸等问题。为此,提出一种边云协同架构及其优化策略。首先,建立REI的数学模型;其次,以REI为分布式边缘控制单元,建立含云服务层、边缘服务层、设备层的REI边云协同架构,以实际工作量分配计算任务;然后,综合考虑系统多方利益主体博弈关系,设计云服务层、边缘服务层优化策略;最后,在此基础上,为提升紧急情况下系统恢复运行的速度,提出一种应急处理方法。通过两种多REI算例测试,结果表明:与传统云端服务架构相比,所提架构在计算速度、应急处理速度方面具有显著优势;所提优化策略能够有效提升REI的运行收益。展开更多
文摘The rapid expansion of the Internet of Things (IoT) has driven the need for advanced computational frameworks capable of handling the complex data processing and security challenges that modern IoT applications demand. However, traditional cloud computing frameworks face significant latency, scalability, and security issues. Quantum-Edge Cloud Computing (QECC) offers an innovative solution by integrating the computational power of quantum computing with the low-latency advantages of edge computing and the scalability of cloud computing resources. This study is grounded in an extensive literature review, performance improvements, and metrics data from Bangladesh, focusing on smart city infrastructure, healthcare monitoring, and the industrial IoT sector. The discussion covers vital elements, including integrating quantum cryptography to enhance data security, the critical role of edge computing in reducing response times, and cloud computing’s ability to support large-scale IoT networks with its extensive resources. Through case studies such as the application of quantum sensors in autonomous vehicles, the practical impact of QECC is demonstrated. Additionally, the paper outlines future research opportunities, including developing quantum-resistant encryption techniques and optimizing quantum algorithms for edge computing. The convergence of these technologies in QECC has the potential to overcome the current limitations of IoT frameworks, setting a new standard for future IoT applications.
基金supported by the National Research Foundation of Korea (NRF) grant funded by the Korea Government (MSIT) (No.2021R1C1C1013133)supported by the Institute of Information and Communications Technology Planning and Evaluation (IITP)grant funded by the Korea Government (MSIT) (RS-2022-00167197,Development of Intelligent 5G/6G Infrastructure Technology for The Smart City)supported by the Soonchunhyang University Research Fund.
文摘In many IIoT architectures,various devices connect to the edge cloud via gateway systems.For data processing,numerous data are delivered to the edge cloud.Delivering data to an appropriate edge cloud is critical to improve IIoT service efficiency.There are two types of costs for this kind of IoT network:a communication cost and a computing cost.For service efficiency,the communication cost of data transmission should be minimized,and the computing cost in the edge cloud should be also minimized.Therefore,in this paper,the communication cost for data transmission is defined as the delay factor,and the computing cost in the edge cloud is defined as the waiting time of the computing intensity.The proposed method selects an edge cloud that minimizes the total cost of the communication and computing costs.That is,a device chooses a routing path to the selected edge cloud based on the costs.The proposed method controls the data flows in a mesh-structured network and appropriately distributes the data processing load.The performance of the proposed method is validated through extensive computer simulation.When the transition probability from good to bad is 0.3 and the transition probability from bad to good is 0.7 in wireless and edge cloud states,the proposed method reduced both the average delay and the service pause counts to about 25%of the existing method.
文摘On a macroscopic level,an edge computing architecture looks like a distributed and decentralized IT(Information Technology)architecture.More in detail,it could be defined as a mesh network of micro data centers capable of processing and storing critical data locally,and to transmit all data received and/or processed to a central data center or a cloud storage repository.This network topology,also taking advantage of the availability on the market of cost-effective small form factor(SFF)electronic components and systems decreasing,brings the essential components of processing,storage,and networking closer to the sources that generate the data.The typical use case is that of Internet of Things(IoT)devices and implementations,which often face latency problems,lack of bandwidth,reliability,which cannot be addressed through the conventional cloud model.In this context,the edge computing architecture can reduce the size of data to be sent to the cloud,processing critical data,sensitive to latency,at the point of origin,via a smart device,or sending it to an intermediate server,located nearby.The aim of this paper is to report some of the main aspects and significant features of edge computing and analyzing several popular case studies.
基金The authors would like to thank for the support from Taif University Researchers Supporting Project number(TURSP-2020/98),Taif University,Taif,Saudi Arabia.
文摘Numerous Internet of Things(IoT)systems produce massive volumes of information that must be handled and answered in a quite short period.The growing energy usage related to the migration of data into the cloud is one of the biggest problems.Edge computation helps users unload the workload again from cloud near the source of the information that must be handled to save time,increase security,and reduce the congestion of networks.Therefore,in this paper,Optimized Energy Efficient Strategy(OEES)has been proposed for extracting,distributing,evaluating the data on the edge devices.In the initial stage of OEES,before the transmission state,the data gathered from edge devices are supported by a fast error like reduction that is regarded as the largest energy user of an IoT system.The initial stage is followed by the reconstructing and the processing state.The processed data is transmitted to the nodes through controlled deep learning techniques.The entire stage of data collection,transmission and data reduction between edge devices uses less energy.The experimental results indicate that the volume of data transferred decreases and does not impact the professional data performance and predictive accuracy.Energy consumption of 7.38 KJ and energy conservation of 55.57 kJ was found in the proposed OEES scheme.Predictive accuracy is 97.5 percent,data performance rate was 97.65 percent,and execution time is 14.49 ms.
文摘Ubiquitous data monitoring and processing with minimal latency is one of the crucial challenges in real-time and scalable applications.Internet of Things(IoT),fog computing,edge computing,cloud computing,and the edge of things are the spine of all real-time and scalable applications.Conspicuously,this study proposed a novel framework for a real-time and scalable application that changes dynamically with time.In this study,IoT deployment is recommended for data acquisition.The Pre-Processing of data with local edge and fog nodes is implemented in this study.The thresholdoriented data classification method is deployed to improve the intrusion detection mechanism’s performance.The employment of machine learningempowered intelligent algorithms in a distributed manner is implemented to enhance the overall response rate of the layered framework.The placement of respondent nodes near the framework’s IoT layer minimizes the network’s latency.For economic evaluation of the proposed framework with minimal efforts,EdgeCloudSim and FogNetSim++simulation environments are deployed in this study.The experimental results confirm the robustness of the proposed system by its improvised threshold-oriented data classification and intrusion detection approach,improved response rate,and prediction mechanism.Moreover,the proposed layered framework provides a robust solution for real-time and scalable applications that changes dynamically with time.
基金the State Major Science and Technology Special Projects(Grant 2018ZX03001023-005)the National Natural Science Foundation of China under Grant No.61831002,61728101,and 61671074the Beijing Natural Science Foundation under Grant No.JQ18016.
文摘The Industrial Internet is a promising technology combining industrial systems with Internet connectivity to significantly improve the product efficiency and reduce production cost by cooperating with intelligent devices,in which the advanced computing,big data analysis and intelligent perception techniques have been involved.This paper comprehensively surveys the recent advances of the Industrial Internet,including reference architectures,key technologies,relative applications and future challenges.Reference architectures which have been proposed for different application scenarios and their corresponding characteristics are summarized.Key technologies,such as cloud computing,mobile edge computing,fog computing,which are classified according to different layers in the architecture,are presented to support a variety of applications in the Industrial Internet.Meanwhile,future challenges and research trends are discussed as well to promote further research of the Industrial Internet.
基金supported by FCT through the LASIGE Research Unit(UIDB/00408/2020UIDP/00408/2020)+1 种基金the Brazilian National Council for Research and Development(CNPq)(#304315/2017-6#430274/2018-1)。
文摘Determining how to structure vehicular network environments can be done in various ways.Here,we highlight vehicle networks’evolution from vehicular ad-hoc networks(VANET)to the internet of vehicles(Io Vs),listing their benefits and limitations.We also highlight the reasons in adopting wireless technologies,in particular,IEEE 802.11 p and 5 G vehicle-toeverything,as well as the use of paradigms able to store and analyze a vast amount of data to produce intelligence and their applications in vehicular environments.We also correlate the use of each of these paradigms with the desire to meet existing intelligent transportation systems’requirements.The presentation of each paradigm is given from a historical and logical standpoint.In particular,vehicular fog computing improves on the deficiences of vehicular cloud computing,so both are not exclusive from the application point of view.We also emphasize some security issues that are linked to the characteristics of these paradigms and vehicular networks,showing that they complement each other and share problems and limitations.As these networks still have many opportunities to grow in both concept and application,we finally discuss concepts and technologies that we believe are beneficial.Throughout this work,we emphasize the crucial role of these concepts for the well-being of humanity.
基金the National Natural Science Foundation of China(Grant No.61871023 and 61931001)Beijing Natural Science Foundation(Grant No.4202054).
文摘The concept of Internet of Everything is like a revolutionary storm,bringing the whole society closer together.Internet of Things(IoT)has played a vital role in the process.With the rise of the concept of Industry 4.0,intelligent transformation is taking place in the industrial field.As a new concept,an industrial IoT system has also attracted the attention of industry and academia.In an actual industrial scenario,a large number of devices will generate numerous industrial datasets.The computing efficiency of an industrial IoT system is greatly improved with the help of using either cloud computing or edge computing.However,privacy issues may seriously harmed interests of users.In this article,we summarize privacy issues in a cloud-or an edge-based industrial IoT system.The privacy analysis includes data privacy,location privacy,query and identity privacy.In addition,we also review privacy solutions when applying software defined network and blockchain under the above two systems.Next,we analyze the computational complexity and privacy protection performance of these solutions.Finally,we discuss open issues to facilitate further studies.
文摘Social networks(SNs)are sources with extreme number of users around the world who are all sharing data like images,audio,and video to their friends using IoT devices.This concept is the so-called Social Internet of Things(SIot).The evolving nature of edge-cloud computing has enabled storage of a large volume of data from various sources,and this task demands an efficient storage procedure.For this kind of large volume of data storage,the usage of data replication using edge with geo-distributed cloud service area is suited to fulfill the user’s expectations with low latency.The major issue is the way to store the data and replicate these large data items optimally and allocate the request from the data center efficiently.For efficient storage of these data,we use edge server,which is part of the cloud server,in this study.Thus,the data are distributed and stored with quick access,which will reduce the latency with response.The proposed data placement approach learns with machine learning(ML)algorithm called radial basis kernel function assisted with support vector machine(RBF-SVM)to classify the data center for storing the user and friend’s data from the SIoT devices.These learning algorithms will be used to predict the workload of the data stored in the data center as either edge or cloud depending on the existing time slots.The data placement with dynamic nature is also optimized using the proposed dynamic graph partitioning(GP)method to meet the individual user’s demand of low latency with minimum costs.This way will keep the SIoT data placement efficient and effective over time.Accordingly,this proposed data placement and replication approach introduces three kinds of innovations compared with the existing data placement approach.(i)Rather than storing the user data in a single cloud,this study uses the edge server closest to the SIoT devices for faster access with reduced response time.(ii)The classification algorithm called RBF-SVM is used to find storage for user for reducing data replication.(iii)Dynamic GP is introduced for data placement with reduced latency and minimum cost to fulfil the dynamic nature of the SN.The simulation result of this approach obtains reduced latency of 130 ms and minimum cost compared with those of the existing data placement approaches.Therefore,our proposed data placement with ML-based learning on edge provides promising results in terms of efficiency,effectiveness,and performance with reduced latency and minimum cost.
文摘现有区域能源互联网(regional energy internet,REI)呈现出多维度、多主体的运行特征,若采用传统集中式云端服务架构,系统易引发高延迟、云爆炸等问题。为此,提出一种边云协同架构及其优化策略。首先,建立REI的数学模型;其次,以REI为分布式边缘控制单元,建立含云服务层、边缘服务层、设备层的REI边云协同架构,以实际工作量分配计算任务;然后,综合考虑系统多方利益主体博弈关系,设计云服务层、边缘服务层优化策略;最后,在此基础上,为提升紧急情况下系统恢复运行的速度,提出一种应急处理方法。通过两种多REI算例测试,结果表明:与传统云端服务架构相比,所提架构在计算速度、应急处理速度方面具有显著优势;所提优化策略能够有效提升REI的运行收益。
基金the National Key Research and Development Program of China (2021YFB1715700)the National Natural Science Foundation of China (62103046)+2 种基金the Beijing Institute of Technology Research Fund Program for Young Scholarsthe Chinese Academy of Sciences and University of Chinese Academy of Sciences for funding the research (Y92902MED2, E1E90808, and E0E90804)the Fundamental Research Funds for the Central Universities (E1E40805)。