The concentration of ice nuclei (IN) and the relationship with aerosol particles were measured and analyzed using three 5-L mixing cloud chambers and a static diffusion cloud chamber at three altitudes in the Huangs...The concentration of ice nuclei (IN) and the relationship with aerosol particles were measured and analyzed using three 5-L mixing cloud chambers and a static diffusion cloud chamber at three altitudes in the Huangshan Mountains in Southeast China from May to September 2011.The results showed that the mean total number concentration of IN on the highest peak of the Huangshan Mountains at an activation temperature (Ta) of-20℃C was 16.6 L-1.When the supersaturation with respect to water (Sw) and with respect to ice (Si) were set to 5%,the average number concentrations of IN measured at an activation temperature of-20℃C by the static diffusion cloud chamber were 0.89 and 0.105 L-1,respectively.A comparison of the concentrations of IN at three different altitudes showed that the concentration of IN at the foot of the mountains was higher than at the peak.A further calculation of the correlation between IN and the concentrations of aerosol particles of different size ranges showed that the IN concentration was well correlated with the concentration of aerosol particles in the size range of 1.2-20 μtm.It was also found that the IN concentration varied with meteorological conditions,such as wind speed,with higher IN concentrations often observed on days with strong wind.An analysis of the backward trajectories of air masses showed that low IN concentrations were often related to air masses travelling along southwest pathways,while higher IN concentrations were usually related to those transported along northeast pathways.展开更多
We report on the experimental observation of the airflow motion induced by an 800 nm, 1 kHz femtosecond filament in a cloud chamber filled with air and helium. It is found that vortex pairs with opposite rotation dire...We report on the experimental observation of the airflow motion induced by an 800 nm, 1 kHz femtosecond filament in a cloud chamber filled with air and helium. It is found that vortex pairs with opposite rotation directions always form both below and above the filaments. We do not observe that the vortices clearly formed, above the filament in air just because of the formation of smaller particles with weaker Mie scattering. Simulations of the airflow motion in helium are conducted by using the laser filament as a heat source, and the simulated pattern of vortices and airflow velocity agree well with the experimental results.展开更多
Sub-picosecond chirped laser pulse-induced airflow and water condensation were investigated in a cloud chamber.The results indicate that the positively chirped sub-picosecond laser pulses generate a more uniform inten...Sub-picosecond chirped laser pulse-induced airflow and water condensation were investigated in a cloud chamber.The results indicate that the positively chirped sub-picosecond laser pulses generate a more uniform intensity distribution inside the plasma column, leading to a weaker airflow and an elliptic-shaped snow pile. The negatively chirped sub-picosecond laser pulses generate a spark-like intensity distribution inside the plasma column, which produces a wider range of airflow and a round snow pile. The amount of snow weight and the concentration of NO3-- are found to be dependent on the intensity distribution inside the plasma column. The visibly stronger plasma column generates much more snow and a higher concentration of NO3--. These experimental results provide a reference for sub-picosecond laser-induced water condensation in realistic atmospheric conditions.展开更多
A 2m^3 isothermal cloud chamber mainly for ice nucleation research is described in this paper.Its structure, attached instruments and experimental procedures are also presented.The experiments of determining the ice n...A 2m^3 isothermal cloud chamber mainly for ice nucleation research is described in this paper.Its structure, attached instruments and experimental procedures are also presented.The experiments of determining the ice nuclei effectiveness for the Agl-containing aerosols produced by three formulations have been conducted and the results have been compared with those of the CSU 960-liter isothermal cloud chamber.All experimental results show that the chamber has advantages of stable performance and reproducibility.It would be expected to become a useful experimental facility for ice nucleation research.展开更多
We define and investigate,via numerical analysis,a one dimensional toymodel of a cloud chamber.An energetic quantum particle,whose initial state is a superposition of two identical wave packets with opposite average m...We define and investigate,via numerical analysis,a one dimensional toymodel of a cloud chamber.An energetic quantum particle,whose initial state is a superposition of two identical wave packets with opposite average momentum,interacts during its evolution and exchanges(small amounts of)energy with an array of localized spins.Triggered by the interaction with the environment,the initial superposition state turns into an incoherent sum of two states describing the following situation:or the particle is going to the left and a large number of spins on the left side changed their states,or the same is happening on the right side.This evolution is reminiscent of what happens in a cloud chamber where a quantum particle,emitted as a spherical wave by a radioactive source,marks its passage inside a supersaturated vapour-chamber in the form of a sequence of small liquid bubbles arranging themselves around a pssible classical trajectory of the particle.展开更多
基金sponsored by the National Natural Science Foundation of China (Grant No. 41030962)the Special Fund for doctorate programs in Chinese Universities (Grant No. 20113228110002)+1 种基金the Priority Academic Program of Development of Jiangsu Higher Education Institutions (PAPD)the Key Laboratory for Aerosol–Cloud– Precipitation of the China Meteorological Administration (Grant No. KDW1101)
文摘The concentration of ice nuclei (IN) and the relationship with aerosol particles were measured and analyzed using three 5-L mixing cloud chambers and a static diffusion cloud chamber at three altitudes in the Huangshan Mountains in Southeast China from May to September 2011.The results showed that the mean total number concentration of IN on the highest peak of the Huangshan Mountains at an activation temperature (Ta) of-20℃C was 16.6 L-1.When the supersaturation with respect to water (Sw) and with respect to ice (Si) were set to 5%,the average number concentrations of IN measured at an activation temperature of-20℃C by the static diffusion cloud chamber were 0.89 and 0.105 L-1,respectively.A comparison of the concentrations of IN at three different altitudes showed that the concentration of IN at the foot of the mountains was higher than at the peak.A further calculation of the correlation between IN and the concentrations of aerosol particles of different size ranges showed that the IN concentration was well correlated with the concentration of aerosol particles in the size range of 1.2-20 μtm.It was also found that the IN concentration varied with meteorological conditions,such as wind speed,with higher IN concentrations often observed on days with strong wind.An analysis of the backward trajectories of air masses showed that low IN concentrations were often related to air masses travelling along southwest pathways,while higher IN concentrations were usually related to those transported along northeast pathways.
基金supported by the National Basic Research Program of China(No.2011CB808100)the National Natural Science Foundation of China(Nos.11425418,61475167,11404354,11174305,and61221064)+2 种基金the Shanghai Science and Technology Talent Project(Nos.12XD1405200)the State Key Laboratory Program of the Chinese Ministry of Science and Technologythe support from the 100 Talent Program of the Chinese Academy of Science and the Shanghai Pujiang Program
文摘We report on the experimental observation of the airflow motion induced by an 800 nm, 1 kHz femtosecond filament in a cloud chamber filled with air and helium. It is found that vortex pairs with opposite rotation directions always form both below and above the filaments. We do not observe that the vortices clearly formed, above the filament in air just because of the formation of smaller particles with weaker Mie scattering. Simulations of the airflow motion in helium are conducted by using the laser filament as a heat source, and the simulated pattern of vortices and airflow velocity agree well with the experimental results.
基金supported by the National Natural Science Foundation of China(Nos.11425418,61475167,11404354,and 61221064)the State Key Laboratory Program of the Chinese Ministry of Science and Technology
文摘Sub-picosecond chirped laser pulse-induced airflow and water condensation were investigated in a cloud chamber.The results indicate that the positively chirped sub-picosecond laser pulses generate a more uniform intensity distribution inside the plasma column, leading to a weaker airflow and an elliptic-shaped snow pile. The negatively chirped sub-picosecond laser pulses generate a spark-like intensity distribution inside the plasma column, which produces a wider range of airflow and a round snow pile. The amount of snow weight and the concentration of NO3-- are found to be dependent on the intensity distribution inside the plasma column. The visibly stronger plasma column generates much more snow and a higher concentration of NO3--. These experimental results provide a reference for sub-picosecond laser-induced water condensation in realistic atmospheric conditions.
文摘A 2m^3 isothermal cloud chamber mainly for ice nucleation research is described in this paper.Its structure, attached instruments and experimental procedures are also presented.The experiments of determining the ice nuclei effectiveness for the Agl-containing aerosols produced by three formulations have been conducted and the results have been compared with those of the CSU 960-liter isothermal cloud chamber.All experimental results show that the chamber has advantages of stable performance and reproducibility.It would be expected to become a useful experimental facility for ice nucleation research.
基金The authors would like to acknowledge support from the ANR LODIQUAS(Modeling and Numerical Simulation of Low Dimensional Quantum Systems,2011-2014)and FIR grant Cond-Math RBFR13WAET.
文摘We define and investigate,via numerical analysis,a one dimensional toymodel of a cloud chamber.An energetic quantum particle,whose initial state is a superposition of two identical wave packets with opposite average momentum,interacts during its evolution and exchanges(small amounts of)energy with an array of localized spins.Triggered by the interaction with the environment,the initial superposition state turns into an incoherent sum of two states describing the following situation:or the particle is going to the left and a large number of spins on the left side changed their states,or the same is happening on the right side.This evolution is reminiscent of what happens in a cloud chamber where a quantum particle,emitted as a spherical wave by a radioactive source,marks its passage inside a supersaturated vapour-chamber in the form of a sequence of small liquid bubbles arranging themselves around a pssible classical trajectory of the particle.