In this paper, I shall sketch a new way to consider a Lindenbaum-Tarski algebra as a 3D logical space in which any one (of the 256 statements) occupies a well-defined position and it is identified by a numerical ID. T...In this paper, I shall sketch a new way to consider a Lindenbaum-Tarski algebra as a 3D logical space in which any one (of the 256 statements) occupies a well-defined position and it is identified by a numerical ID. This allows pure mechanical computation both for generating rules and inferences. It is shown that this abstract formalism can be geometrically represented with logical spaces and subspaces allowing a vectorial representation. Finally, it shows the application to quantum computing through the example of three coupled harmonic oscillators.展开更多
The satellite laser ranging (SLR) data quality from the COMPASS was analyzed, and the difference between curve recognition in computer vision and pre-process of SLR data finally proposed a new algorithm for SLR was ...The satellite laser ranging (SLR) data quality from the COMPASS was analyzed, and the difference between curve recognition in computer vision and pre-process of SLR data finally proposed a new algorithm for SLR was discussed data based on curve recognition from points cloud is proposed. The results obtained by the new algorithm are 85 % (or even higher) consistent with that of the screen displaying method, furthermore, the new method can process SLR data automatically, which makes it possible to be used in the development of the COMPASS navigation system.展开更多
目的分析基于从头训练模式深度学习-卷积神经网络模型[the deep learning convolutional neural network model trained from scratch,DL-CNN(fs)]的人工智能算法评估急性肺动脉血栓栓塞(acute pulmonary thromboembolism,APE)的价值。...目的分析基于从头训练模式深度学习-卷积神经网络模型[the deep learning convolutional neural network model trained from scratch,DL-CNN(fs)]的人工智能算法评估急性肺动脉血栓栓塞(acute pulmonary thromboembolism,APE)的价值。方法回顾性纳入214例可疑APE行CT肺动脉造影(CTPA)的住院患者,包括急性肺动脉血栓栓塞137例,阴性77例。放射科医师根据CTPA图像判断有无APE,并计算Qanadli评分、Mastora评分和其他CTPA参数。采用DL-CNN(fs)训练网络模型自动检测栓子的分布及容积。评估DL-CNN(fs)模型测量血栓分布的价值,计算血栓负荷与Qanadli评分、Mastora评分和其他CTPA参数的相关性。结果DL-CNN(fs)测算的中心肺动脉栓子敏感度、特异度、感兴趣区曲线下面积(AUC)分别为100%、16.8%、0.584(95%CI,0.508~0.661);DL-CNN(fs)测算的外周肺动脉栓子敏感度、特异度、AUC均较高(R1-R9,60.8%~95.2%,67.9%~87.1%,0.740~0.844;L1-L10,64.6%~93.4%,62.7%~83.1%,0.732~0.791)。DL-CNN(fs)测算的栓子体积与Qanadli score肺栓塞指数显著正相关(r=0.867,P<0.001),与Mastora score肺栓塞指数显著正相关(r=0.854,P<0.001),与右心室及左心室最大横径比、右心室及左心室最大面积比呈正相关(r=0.549,0.559,P<0.01)。结论DL-CNN(fs)模型检测外周肺动脉栓子具有较高的价值,对中心肺动脉栓子诊断特异度有待进一步提高。DL-CNN(fs)模型自动提供APE患者的栓子体积,可以一定程度反映栓塞程度及右心功能,能够辅助医生对于APE患者血栓负荷及危险分层的快速评估。展开更多
文摘In this paper, I shall sketch a new way to consider a Lindenbaum-Tarski algebra as a 3D logical space in which any one (of the 256 statements) occupies a well-defined position and it is identified by a numerical ID. This allows pure mechanical computation both for generating rules and inferences. It is shown that this abstract formalism can be geometrically represented with logical spaces and subspaces allowing a vectorial representation. Finally, it shows the application to quantum computing through the example of three coupled harmonic oscillators.
文摘The satellite laser ranging (SLR) data quality from the COMPASS was analyzed, and the difference between curve recognition in computer vision and pre-process of SLR data finally proposed a new algorithm for SLR was discussed data based on curve recognition from points cloud is proposed. The results obtained by the new algorithm are 85 % (or even higher) consistent with that of the screen displaying method, furthermore, the new method can process SLR data automatically, which makes it possible to be used in the development of the COMPASS navigation system.
文摘目的分析基于从头训练模式深度学习-卷积神经网络模型[the deep learning convolutional neural network model trained from scratch,DL-CNN(fs)]的人工智能算法评估急性肺动脉血栓栓塞(acute pulmonary thromboembolism,APE)的价值。方法回顾性纳入214例可疑APE行CT肺动脉造影(CTPA)的住院患者,包括急性肺动脉血栓栓塞137例,阴性77例。放射科医师根据CTPA图像判断有无APE,并计算Qanadli评分、Mastora评分和其他CTPA参数。采用DL-CNN(fs)训练网络模型自动检测栓子的分布及容积。评估DL-CNN(fs)模型测量血栓分布的价值,计算血栓负荷与Qanadli评分、Mastora评分和其他CTPA参数的相关性。结果DL-CNN(fs)测算的中心肺动脉栓子敏感度、特异度、感兴趣区曲线下面积(AUC)分别为100%、16.8%、0.584(95%CI,0.508~0.661);DL-CNN(fs)测算的外周肺动脉栓子敏感度、特异度、AUC均较高(R1-R9,60.8%~95.2%,67.9%~87.1%,0.740~0.844;L1-L10,64.6%~93.4%,62.7%~83.1%,0.732~0.791)。DL-CNN(fs)测算的栓子体积与Qanadli score肺栓塞指数显著正相关(r=0.867,P<0.001),与Mastora score肺栓塞指数显著正相关(r=0.854,P<0.001),与右心室及左心室最大横径比、右心室及左心室最大面积比呈正相关(r=0.549,0.559,P<0.01)。结论DL-CNN(fs)模型检测外周肺动脉栓子具有较高的价值,对中心肺动脉栓子诊断特异度有待进一步提高。DL-CNN(fs)模型自动提供APE患者的栓子体积,可以一定程度反映栓塞程度及右心功能,能够辅助医生对于APE患者血栓负荷及危险分层的快速评估。
基金funded by the 12th Five-year National Plan for Science and Technology(2012BAK16B02)the Council of National Science Foundation of China(81571851,81401559)+1 种基金the Scientific and Technological Key Project of Shanghai Municipality(14231202500,14DZ2271500)the Central Research Institute Public Project(GY2013Z-3,GY2014Z-1)