As one of the Special Economic Zones since the reform and opening up, Zhuhai has developed during the past 30 years. Its economic development, industrial structure and ecological environment have undergone great chang...As one of the Special Economic Zones since the reform and opening up, Zhuhai has developed during the past 30 years. Its economic development, industrial structure and ecological environment have undergone great changes. Research on changes in Zhuhai’s land ecological security is of great significance. Using relevant data from 2007-2012, this study established a land ecological security assessment system based on the PSR conceptual framework model. The system contained 18 indicators from 3 aspects according to the concrete features of Zhuhai. Then we used the matterelement analysis and the improved entropy weight to analyze and evaluate the land ecological security of Zhuhai. The results showed that: from 2007 to 2012, the levels of the land ecological security of Zhuhai were “secure”, and the value increased year by year;as the land ecological security response value increased, Zhuhai was capable of solving land ecosystem problems. However, it should be noted that the structure of land ecosystem in Zhuhai has not formed and that rapid expansion of construction land has caused the shortage of cultivated land and other issues. Measures should be taken to control the construction area, improve land intensive utilization and improve the land ecological security.展开更多
On the basis of the soil environment investigation in Da'an City, Jilin Province, China, 40 soil samples from main land use types were obtained and tested by standard method. Soil organic matter (SOM), total N (TN...On the basis of the soil environment investigation in Da'an City, Jilin Province, China, 40 soil samples from main land use types were obtained and tested by standard method. Soil organic matter (SOM), total N (TN), total P (TP), total K (TK), available N (AN), available P (AP) and available K (AK) were chosen as the evaluation factors. A regional soil nutrient evaluation model was developed based on the matter-element model. The results show that the soil samples with nutrient grade Ⅱ-Ⅴ respectively account for 10%, 30%, 32.5% and 27.5%, and those with grade Ⅳ and Ⅴ account for 60% in all samples. The relationship between soil nutrients and land types indicates that the nutrients of farmland are relatively good, with 41.7% of soil samples with the nutrient grade Ⅳ and Ⅴ. The nutrients of saline-alkali land and sandy land are the worst, with 100% of soil samples with the nutrient grade IV and V. And the ratios of soil samples grade IV and V in grassland and wasteland are respectively 62.5 % and 54.55%. Generally speaking, the soil nutrients status in Da'an City is poor, 60% of soil samples are in poor and extremely poor conditions, indicating that the soil has been severely eroded. Being a relatively superior evaluation method with more accurate resuits and spatial distribution consistency, matter-element analysis is more suitable for regional soil nutrient evaluation than previous models.展开更多
To solve the problem of target damage assessment when fragments attack target under uncertain projectile and target intersection in an air defense intercept,this paper proposes a method for calculating target damage p...To solve the problem of target damage assessment when fragments attack target under uncertain projectile and target intersection in an air defense intercept,this paper proposes a method for calculating target damage probability leveraging spatio-temporal finite multilayer fragments distribution and the target damage assessment algorithm based on cloud model theory.Drawing on the spatial dispersion characteristics of fragments of projectile proximity explosion,we divide into a finite number of fragments distribution planes based on the time series in space,set up a fragment layer dispersion model grounded in the time series and intersection criterion for determining the effective penetration of each layer of fragments into the target.Building on the precondition that the multilayer fragments of the time series effectively assail the target,we also establish the damage criterion of the perforation and penetration damage and deduce the damage probability calculation model.Taking the damage probability of the fragment layer in the spatio-temporal sequence to the target as the input state variable,we introduce cloud model theory to research the target damage assessment method.Combining the equivalent simulation experiment,the scientific and rational nature of the proposed method were validated through quantitative calculations and comparative analysis.展开更多
This paper was motivated by the existing problems of Cloud Data storage in Imo State University, Nigeria such as outsourced data causing the loss of data and misuse of customer information by unauthorized users or hac...This paper was motivated by the existing problems of Cloud Data storage in Imo State University, Nigeria such as outsourced data causing the loss of data and misuse of customer information by unauthorized users or hackers, thereby making customer/client data visible and unprotected. Also, this led to enormous risk of the clients/customers due to defective equipment, bugs, faulty servers, and specious actions. The aim if this paper therefore is to analyze a secure model using Unicode Transformation Format (UTF) base 64 algorithms for storage of data in cloud securely. The methodology used was Object Orientated Hypermedia Analysis and Design Methodology (OOHADM) was adopted. Python was used to develop the security model;the role-based access control (RBAC) and multi-factor authentication (MFA) to enhance security Algorithm were integrated into the Information System developed with HTML 5, JavaScript, Cascading Style Sheet (CSS) version 3 and PHP7. This paper also discussed some of the following concepts;Development of Computing in Cloud, Characteristics of computing, Cloud deployment Model, Cloud Service Models, etc. The results showed that the proposed enhanced security model for information systems of cooperate platform handled multiple authorization and authentication menace, that only one login page will direct all login requests of the different modules to one Single Sign On Server (SSOS). This will in turn redirect users to their requested resources/module when authenticated, leveraging on the Geo-location integration for physical location validation. The emergence of this newly developed system will solve the shortcomings of the existing systems and reduce time and resources incurred while using the existing system.展开更多
In view of the limitations of traditional measurement methods in the field of building information,such as complex operation,low timeliness and poor accuracy,a new way of combining three-dimensional scanning technolog...In view of the limitations of traditional measurement methods in the field of building information,such as complex operation,low timeliness and poor accuracy,a new way of combining three-dimensional scanning technology and BIM(Building Information Modeling)model was discussed.Focused on the efficient acquisition of building geometric information using the fast-developing 3D point cloud technology,an improved deep learning-based 3D point cloud recognition method was proposed.The method optimised the network structure based on RandLA-Net to adapt to the large-scale point cloud processing requirements,while the semantic and instance features of the point cloud were integrated to significantly improve the recognition accuracy and provide a precise basis for BIM model remodeling.In addition,a visual BIM model generation system was developed,which systematically transformed the point cloud recognition results into BIM component parameters,automatically constructed BIM models,and promoted the open sharing and secondary development of models.The research results not only effectively promote the automation process of converting 3D point cloud data to refined BIM models,but also provide important technical support for promoting building informatisation and accelerating the construction of smart cities,showing a wide range of application potential and practical value.展开更多
When water environmental carrying capacity of public resource tourist attraction is studied, the two action subjects of tourists and local residents should be discussed, and comprehensive consideration must be given t...When water environmental carrying capacity of public resource tourist attraction is studied, the two action subjects of tourists and local residents should be discussed, and comprehensive consideration must be given to the influence of these two on water environment. On the basis of water resource carrying capacity and water quality carrying capacity, water environmental carrying capacity index of public resource tourist attraction was constructed, the model for the water environmental carrying capacity of public resource tourist attraction was established on the basis of matter-element model and analytical hierarchy process. By applying this method, water environmental carrying capacity situation of a certain public resource tourist attraction can be gained, moreover, situations about several aspects of water environmental carrying capacity can be evaluated.展开更多
In 1995, the Intergovernmental Panel on Climate Change (IPCC) released a thermodynamic model based on the Greenhouse Effect, aiming to forecast global temperatures. This study delves into the intricacies of that model...In 1995, the Intergovernmental Panel on Climate Change (IPCC) released a thermodynamic model based on the Greenhouse Effect, aiming to forecast global temperatures. This study delves into the intricacies of that model. Some interesting observations are revealed. The IPCC model equated average temperatures with average energy fluxes, which can cause significant errors. The model assumed that all energy fluxes remained constant, and the Earth emitted infrared radiation as if it were a blackbody. Neither of those conditions exists. The IPCC’s definition of Climate Change only includes events caused by human actions, excluding most causes. Satellite data aimed at the tops of clouds may have inferred a high Greenhouse Gas absorption flux. The model showed more energy coming from the atmosphere than absorbed from the sun, which may have caused a violation of the First and Second Laws of Thermodynamics. There were unexpectedly large gaps in the satellite data that aligned with various absorption bands of Greenhouse Gases, possibly caused by photon scattering associated with re-emissions. Based on science, we developed a cloud-based climate model that complied with the Radiation Laws and the First and Second Laws of Thermodynamics. The Cloud Model showed that 81.3% of the outgoing reflected and infrared radiation was applicable to the clouds and water vapor. In comparison, the involvement of CO<sub>2</sub> was only 0.04%, making it too minuscule to measure reliably.展开更多
The theory and method of extenics were applied to establish classical field matterelements and segment field matter elements for coal and gas outburst.A matter-element model for prediction was established based on fiv...The theory and method of extenics were applied to establish classical field matterelements and segment field matter elements for coal and gas outburst.A matter-element model for prediction was established based on five matter-elements,which includedgas pressure,types of coal damage,coal rigidity,initial speed of methane diffusionand in-situ stress.Each index weight was given fairly and quickly through the improvedanalytic hierarchy process,which need not carry on consistency checks,so accuracy ofassessment can be improved.展开更多
Purpose-In order to solve the problem of inaccurate calculation of index weights,subjectivity and uncertainty of index assessment in the risk assessment process,this study aims to propose a scientific and reasonable c...Purpose-In order to solve the problem of inaccurate calculation of index weights,subjectivity and uncertainty of index assessment in the risk assessment process,this study aims to propose a scientific and reasonable centralized traffic control(CTC)system risk assessment method.Design/methodologylapproach-First,system-theoretic process analysis(STPA)is used to conduct risk analysis on the CTC system and constructs risk assessment indexes based on this analysis.Then,to enhance the accuracy of weight calculation,the fuzzy analytical hierarchy process(FAHP),fuzzy decision-making trial and evaluation laboratory(FDEMATEL)and entropy weight method are employed to calculate the subjective weight,relative weight and objective weight of each index.These three types of weights are combined using game theory to obtain the combined weight for each index.To reduce subjectivity and uncertainty in the assessment process,the backward cloud generator method is utilized to obtain the numerical character(NC)of the cloud model for each index.The NCs of the indexes are then weighted to derive the comprehensive cloud for risk assessment of the CTC system.This cloud model is used to obtain the CTC system's comprehensive risk assessment.The model's similarity measurement method gauges the likeness between the comprehensive risk assessment cloud and the risk standard cloud.Finally,this process yields the risk assessment results for the CTC system.Findings-The cloud model can handle the subjectivity and fuzziness in the risk assessment process well.The cloud model-based risk assessment method was applied to the CTC system risk assessment of a railway group and achieved good results.Originality/value-This study provides a cloud model-based method for risk assessment of CTC systems,which accurately calculates the weight of risk indexes and uses cloud models to reduce uncertainty and subjectivity in the assessment,achieving effective risk assessment of CTC systems.It can provide a reference and theoretical basis for risk management of the CTC system.展开更多
Cloud Computing is an uprising technology in the rapid growing IT world. The adaptation of cloud computing is increasing in very large scale business organizations to small institutions rapidly due to many advanced fe...Cloud Computing is an uprising technology in the rapid growing IT world. The adaptation of cloud computing is increasing in very large scale business organizations to small institutions rapidly due to many advanced features of cloud computing, such as SaaS, PaaS and IaaS service models. So, nowadays, many organizations are trying to implement Cloud Computing based ERP system to enjoy the benefits of cloud computing. To implement any ERP system, an organization usually faces many challenges. As a result, this research has introduced how easily this cloud system can be implemented in an organization. By using this ERP system, an organization can be benefited in many ways;especially Small and Medium Enterprises (SMEs) can enjoy the highest possible benefits from this system.展开更多
The article analyses several key issues which restrict the effectiveness of fund project peer review work. It analyses the evaluating theory and matter-element theory to access the expert anti-evaluation model, and al...The article analyses several key issues which restrict the effectiveness of fund project peer review work. It analyses the evaluating theory and matter-element theory to access the expert anti-evaluation model, and also studies the expert anti-evaluation index system to support the anti-evaluation method. The practical basis is the true score data of the experts which is collected from the actual anti-evaluation in Liaoning province science and technology fund project peer review system. With the practical experience of the actual project, we prove that the expert index system anti-evaluation model and expert anti-evaluation method can improve the fund project peer review work and play a positive role for the peer review work and also make the review work more scientific and more rational.展开更多
The method of cloud model with entropy weight was adopted for the prediction of rock burst classification. Some main factors of rock burst including the uniaxial compressive strength (σc), the tensile strength (σ...The method of cloud model with entropy weight was adopted for the prediction of rock burst classification. Some main factors of rock burst including the uniaxial compressive strength (σc), the tensile strength (σt), the tangential stress (σθ), the rock brittleness coefficient (σc/σt), the stress coefficient (σθ /σc) and the elastic energy index (Wet) are chosen to establish evaluation index system. The entropy?cloud model and criterion are obtained through 209 sets of rock burst samples from underground rock projects. The sensitivity of indicators is analyzed and 209 sets of rock burst samples are discriminated by this model. The discriminant results of the entropy-cloud model are compared with those of Bayes, KNN and RF methods. The results show that the sensitivity order of those factors from high to low is σ_θ /σ_c, σ_θ, W_(ct), σ_c/σ_t, σ_t, σ_c, and the entropy-cloud model has higher accuracy than Bayes, K-Nearest Neighbor algorithm (KNN) and Random Forest (RF) methods.展开更多
Aiming at the real-time fluctuation and nonlinear characteristics of the expressway short-term traffic flow forecasting the parameter projection pursuit regression PPPR model is applied to forecast the expressway traf...Aiming at the real-time fluctuation and nonlinear characteristics of the expressway short-term traffic flow forecasting the parameter projection pursuit regression PPPR model is applied to forecast the expressway traffic flow where the orthogonal Hermite polynomial is used to fit the ridge functions and the least square method is employed to determine the polynomial weight coefficient c.In order to efficiently optimize the projection direction a and the number M of ridge functions of the PPPR model the chaos cloud particle swarm optimization CCPSO algorithm is applied to optimize the parameters. The CCPSO-PPPR hybrid optimization model for expressway short-term traffic flow forecasting is established in which the CCPSO algorithm is used to optimize the optimal projection direction a in the inner layer while the number M of ridge functions is optimized in the outer layer.Traffic volume weather factors and travel date of the previous several time intervals of the road section are taken as the input influencing factors. Example forecasting and model comparison results indicate that the proposed model can obtain a better forecasting effect and its absolute error is controlled within [-6,6] which can meet the application requirements of expressway traffic flow forecasting.展开更多
Model reconstruction from points scanned on existing physical objects is much important in a variety of situations such as reverse engineering for mechanical products, computer vision and recovery of biological shapes...Model reconstruction from points scanned on existing physical objects is much important in a variety of situations such as reverse engineering for mechanical products, computer vision and recovery of biological shapes from two dimensional contours. With the development of measuring equipment, cloud points that contain more details of the object can be obtained conveniently. On the other hand, large quantity of sampled points brings difficulties to model reconstruction method. This paper first presents an algorithm to automatically reduce the number of cloud points under given tolerance. Triangle mesh surface from the simplified data set is reconstructed by the marching cubes algorithm. For various reasons, reconstructed mesh usually contains unwanted holes. An approach to create new triangles is proposed with optimized shape for covering the unexpected holes in triangle meshes. After hole filling, watertight triangle mesh can be directly output in STL format, which is widely used in rapid prototype manufacturing. Practical examples are included to demonstrate the method.展开更多
In order to reduce amount of data storage and improve processing capacity of the system, this paper proposes a new classification method of data source by combining phase synchronization model in network clusteri...In order to reduce amount of data storage and improve processing capacity of the system, this paper proposes a new classification method of data source by combining phase synchronization model in network clustering with cloud model. Firstly, taking data source as a complex network, after the topography of network is obtained, the cloud model of each node data is determined by fuzzy analytic hierarchy process (AHP). Secondly, by calculating expectation, entropy and hyper entropy of the cloud model, comprehensive coupling strength is got and then it is regarded as the edge weight of topography. Finally, distribution curve is obtained by iterating the phase of each node by means of phase synchronization model. Thus classification of data source is completed. This method can not only provide convenience for storage, cleaning and compression of data, but also improve the efficiency of data analysis.展开更多
Rapid urbanization has led to a surge in the number of towering structures,and overturning is widely used because it can better accommodate the construction of shaped structures such as variable sections.The complexit...Rapid urbanization has led to a surge in the number of towering structures,and overturning is widely used because it can better accommodate the construction of shaped structures such as variable sections.The complexity of the construction process makes the construction risk have certain randomness,so this paper proposes a cloudbased coupled matter-element model to address the ambiguity and randomness in the safety risk assessment of overturning construction of towering structures.In the pretended model,the digital eigenvalues of the cloud model are used to replace the eigenvalues in the matter–element basic element,and calculate the cloud correlation of the risk assessment metrics through the correlation algorithm of the cloud model to build the computational model.Meanwhile,the improved hierarchical analysis method based on the cloud model is used to determine the weight of the index.The comprehensive evaluation scores of the evaluation event are then obtained through the weighted average method,and the safety risk level is determined accordingly.Through empirical analysis,(1)the improved hierarchical analysis method based on the cloud model can incorporate the data of multiple decisionmakers into the calculation formula to determine theweights,which makes the assessment resultsmore credible;(2)the evaluation results of the cloud-basedmatter-element coupledmodelmethod are basically consistent with those of the other two commonly used methods,and the confidence factor is less than 0.05,indicating that the cloudbased physical element coupled model method is reasonable and practical for towering structure overturning;(3)the cloud-based coupled element model method,which confirms the reliability of risk level by performing Spearman correlation on comprehensive assessment scores,can provide more comprehensive information of instances compared with other methods,and more comprehensively reflects the fuzzy uncertainty relationship between assessment indexes,which makes the assessment results more realistic,scientific and reliable.展开更多
Uncertainties existing in the process of dam deformation negatively influence deformation prediction. However, existing deformation pre- diction models seldom consider uncertainties. In this study, a cloud-Verhulst hy...Uncertainties existing in the process of dam deformation negatively influence deformation prediction. However, existing deformation pre- diction models seldom consider uncertainties. In this study, a cloud-Verhulst hybrid prediction model was established by combing a cloud model with the Verhulst model. The expectation, one of the cloud characteristic parameters, was obtained using the Verhulst model, and the other two cloud characteristic parameters, entropy and hyper-entropy, were calculated by introducing inertia weight. The hybrid prediction model was used to predict the dam deformation in a hydroelectric project. Comparison of the prediction results of the hybrid prediction model with those of a traditional statistical model and the monitoring values shows that the proposed model has higher prediction accuracy than the traditional sta- tistical model. It provides a new approach to predicting dam deformation under uncertain conditions.展开更多
The motion of particle clouds formed by dumping dredged material into quiescent waters is experimentally and numerically studied. In the numerical model, the particle phase is modeled by the dispersion model, and turb...The motion of particle clouds formed by dumping dredged material into quiescent waters is experimentally and numerically studied. In the numerical model, the particle phase is modeled by the dispersion model, and turbulence is calculated by the large eddy simulation. The governing equations, including the filtered Navier-Stokes equations and mass transport equation, are solved based on the operator-splitting algorithm and an implicit cubic spline interpolation scheme. The eddy viscosity is evaluated by the modified Smagorinsky model including the buoyancy term. Comparisons of main flow characteristics, including shape, size, average density excess, moving speed and the amount of particles deposited on the bed, between experimental and computational results show that the numerical model well predicts the motion of the cloud from the falling to spreading stage. The effects of silt-fence on the motion of the particle cloud are also investigated.展开更多
The accuracy of present flatness predictive method is limited and it just belongs to software simulation. In order to improve it, a novel flatness predictive model via T-S cloud reasoning network implemented by digita...The accuracy of present flatness predictive method is limited and it just belongs to software simulation. In order to improve it, a novel flatness predictive model via T-S cloud reasoning network implemented by digital signal processor(DSP) is proposed. First, the combination of genetic algorithm(GA) and simulated annealing algorithm(SAA) is put forward, called GA-SA algorithm, which can make full use of the global search ability of GA and local search ability of SA. Later, based on T-S cloud reasoning neural network, flatness predictive model is designed in DSP. And it is applied to 900 HC reversible cold rolling mill. Experimental results demonstrate that the flatness predictive model via T-S cloud reasoning network can run on the hardware DSP TMS320 F2812 with high accuracy and robustness by using GA-SA algorithm to optimize the model parameter.展开更多
文摘As one of the Special Economic Zones since the reform and opening up, Zhuhai has developed during the past 30 years. Its economic development, industrial structure and ecological environment have undergone great changes. Research on changes in Zhuhai’s land ecological security is of great significance. Using relevant data from 2007-2012, this study established a land ecological security assessment system based on the PSR conceptual framework model. The system contained 18 indicators from 3 aspects according to the concrete features of Zhuhai. Then we used the matterelement analysis and the improved entropy weight to analyze and evaluate the land ecological security of Zhuhai. The results showed that: from 2007 to 2012, the levels of the land ecological security of Zhuhai were “secure”, and the value increased year by year;as the land ecological security response value increased, Zhuhai was capable of solving land ecosystem problems. However, it should be noted that the structure of land ecosystem in Zhuhai has not formed and that rapid expansion of construction land has caused the shortage of cultivated land and other issues. Measures should be taken to control the construction area, improve land intensive utilization and improve the land ecological security.
基金Under the auspices of National Natural Science Foundation of China (No. 40572170, 40871088 )
文摘On the basis of the soil environment investigation in Da'an City, Jilin Province, China, 40 soil samples from main land use types were obtained and tested by standard method. Soil organic matter (SOM), total N (TN), total P (TP), total K (TK), available N (AN), available P (AP) and available K (AK) were chosen as the evaluation factors. A regional soil nutrient evaluation model was developed based on the matter-element model. The results show that the soil samples with nutrient grade Ⅱ-Ⅴ respectively account for 10%, 30%, 32.5% and 27.5%, and those with grade Ⅳ and Ⅴ account for 60% in all samples. The relationship between soil nutrients and land types indicates that the nutrients of farmland are relatively good, with 41.7% of soil samples with the nutrient grade Ⅳ and Ⅴ. The nutrients of saline-alkali land and sandy land are the worst, with 100% of soil samples with the nutrient grade IV and V. And the ratios of soil samples grade IV and V in grassland and wasteland are respectively 62.5 % and 54.55%. Generally speaking, the soil nutrients status in Da'an City is poor, 60% of soil samples are in poor and extremely poor conditions, indicating that the soil has been severely eroded. Being a relatively superior evaluation method with more accurate resuits and spatial distribution consistency, matter-element analysis is more suitable for regional soil nutrient evaluation than previous models.
基金supported by National Natural Science Foundation of China(Grant No.62073256)the Shaanxi Provincial Science and Technology Department(Grant No.2023-YBGY-342).
文摘To solve the problem of target damage assessment when fragments attack target under uncertain projectile and target intersection in an air defense intercept,this paper proposes a method for calculating target damage probability leveraging spatio-temporal finite multilayer fragments distribution and the target damage assessment algorithm based on cloud model theory.Drawing on the spatial dispersion characteristics of fragments of projectile proximity explosion,we divide into a finite number of fragments distribution planes based on the time series in space,set up a fragment layer dispersion model grounded in the time series and intersection criterion for determining the effective penetration of each layer of fragments into the target.Building on the precondition that the multilayer fragments of the time series effectively assail the target,we also establish the damage criterion of the perforation and penetration damage and deduce the damage probability calculation model.Taking the damage probability of the fragment layer in the spatio-temporal sequence to the target as the input state variable,we introduce cloud model theory to research the target damage assessment method.Combining the equivalent simulation experiment,the scientific and rational nature of the proposed method were validated through quantitative calculations and comparative analysis.
文摘This paper was motivated by the existing problems of Cloud Data storage in Imo State University, Nigeria such as outsourced data causing the loss of data and misuse of customer information by unauthorized users or hackers, thereby making customer/client data visible and unprotected. Also, this led to enormous risk of the clients/customers due to defective equipment, bugs, faulty servers, and specious actions. The aim if this paper therefore is to analyze a secure model using Unicode Transformation Format (UTF) base 64 algorithms for storage of data in cloud securely. The methodology used was Object Orientated Hypermedia Analysis and Design Methodology (OOHADM) was adopted. Python was used to develop the security model;the role-based access control (RBAC) and multi-factor authentication (MFA) to enhance security Algorithm were integrated into the Information System developed with HTML 5, JavaScript, Cascading Style Sheet (CSS) version 3 and PHP7. This paper also discussed some of the following concepts;Development of Computing in Cloud, Characteristics of computing, Cloud deployment Model, Cloud Service Models, etc. The results showed that the proposed enhanced security model for information systems of cooperate platform handled multiple authorization and authentication menace, that only one login page will direct all login requests of the different modules to one Single Sign On Server (SSOS). This will in turn redirect users to their requested resources/module when authenticated, leveraging on the Geo-location integration for physical location validation. The emergence of this newly developed system will solve the shortcomings of the existing systems and reduce time and resources incurred while using the existing system.
文摘In view of the limitations of traditional measurement methods in the field of building information,such as complex operation,low timeliness and poor accuracy,a new way of combining three-dimensional scanning technology and BIM(Building Information Modeling)model was discussed.Focused on the efficient acquisition of building geometric information using the fast-developing 3D point cloud technology,an improved deep learning-based 3D point cloud recognition method was proposed.The method optimised the network structure based on RandLA-Net to adapt to the large-scale point cloud processing requirements,while the semantic and instance features of the point cloud were integrated to significantly improve the recognition accuracy and provide a precise basis for BIM model remodeling.In addition,a visual BIM model generation system was developed,which systematically transformed the point cloud recognition results into BIM component parameters,automatically constructed BIM models,and promoted the open sharing and secondary development of models.The research results not only effectively promote the automation process of converting 3D point cloud data to refined BIM models,but also provide important technical support for promoting building informatisation and accelerating the construction of smart cities,showing a wide range of application potential and practical value.
文摘When water environmental carrying capacity of public resource tourist attraction is studied, the two action subjects of tourists and local residents should be discussed, and comprehensive consideration must be given to the influence of these two on water environment. On the basis of water resource carrying capacity and water quality carrying capacity, water environmental carrying capacity index of public resource tourist attraction was constructed, the model for the water environmental carrying capacity of public resource tourist attraction was established on the basis of matter-element model and analytical hierarchy process. By applying this method, water environmental carrying capacity situation of a certain public resource tourist attraction can be gained, moreover, situations about several aspects of water environmental carrying capacity can be evaluated.
文摘In 1995, the Intergovernmental Panel on Climate Change (IPCC) released a thermodynamic model based on the Greenhouse Effect, aiming to forecast global temperatures. This study delves into the intricacies of that model. Some interesting observations are revealed. The IPCC model equated average temperatures with average energy fluxes, which can cause significant errors. The model assumed that all energy fluxes remained constant, and the Earth emitted infrared radiation as if it were a blackbody. Neither of those conditions exists. The IPCC’s definition of Climate Change only includes events caused by human actions, excluding most causes. Satellite data aimed at the tops of clouds may have inferred a high Greenhouse Gas absorption flux. The model showed more energy coming from the atmosphere than absorbed from the sun, which may have caused a violation of the First and Second Laws of Thermodynamics. There were unexpectedly large gaps in the satellite data that aligned with various absorption bands of Greenhouse Gases, possibly caused by photon scattering associated with re-emissions. Based on science, we developed a cloud-based climate model that complied with the Radiation Laws and the First and Second Laws of Thermodynamics. The Cloud Model showed that 81.3% of the outgoing reflected and infrared radiation was applicable to the clouds and water vapor. In comparison, the involvement of CO<sub>2</sub> was only 0.04%, making it too minuscule to measure reliably.
基金Supported by the National Natural Science Foundation of China(50534080)the Science and Technology Research Project of Chongqing(CSCT,2006AA7002)
文摘The theory and method of extenics were applied to establish classical field matterelements and segment field matter elements for coal and gas outburst.A matter-element model for prediction was established based on five matter-elements,which includedgas pressure,types of coal damage,coal rigidity,initial speed of methane diffusionand in-situ stress.Each index weight was given fairly and quickly through the improvedanalytic hierarchy process,which need not carry on consistency checks,so accuracy ofassessment can be improved.
基金National Natural Science Foundation of China under Grant 62203468Technological Research and Development Program of China State Railway Group Co.,Ltd.under Grant J2023G007+2 种基金Young Elite Scientist Sponsorship Program by China Association for Science and Technology(CAST)under Grant 2022QNRC001Youth Talent Program Supported by China Railway SocietyResearch Program of Beijing Hua-Tie Information Technology Corporation Limited under Grant 2023HT02.
文摘Purpose-In order to solve the problem of inaccurate calculation of index weights,subjectivity and uncertainty of index assessment in the risk assessment process,this study aims to propose a scientific and reasonable centralized traffic control(CTC)system risk assessment method.Design/methodologylapproach-First,system-theoretic process analysis(STPA)is used to conduct risk analysis on the CTC system and constructs risk assessment indexes based on this analysis.Then,to enhance the accuracy of weight calculation,the fuzzy analytical hierarchy process(FAHP),fuzzy decision-making trial and evaluation laboratory(FDEMATEL)and entropy weight method are employed to calculate the subjective weight,relative weight and objective weight of each index.These three types of weights are combined using game theory to obtain the combined weight for each index.To reduce subjectivity and uncertainty in the assessment process,the backward cloud generator method is utilized to obtain the numerical character(NC)of the cloud model for each index.The NCs of the indexes are then weighted to derive the comprehensive cloud for risk assessment of the CTC system.This cloud model is used to obtain the CTC system's comprehensive risk assessment.The model's similarity measurement method gauges the likeness between the comprehensive risk assessment cloud and the risk standard cloud.Finally,this process yields the risk assessment results for the CTC system.Findings-The cloud model can handle the subjectivity and fuzziness in the risk assessment process well.The cloud model-based risk assessment method was applied to the CTC system risk assessment of a railway group and achieved good results.Originality/value-This study provides a cloud model-based method for risk assessment of CTC systems,which accurately calculates the weight of risk indexes and uses cloud models to reduce uncertainty and subjectivity in the assessment,achieving effective risk assessment of CTC systems.It can provide a reference and theoretical basis for risk management of the CTC system.
文摘Cloud Computing is an uprising technology in the rapid growing IT world. The adaptation of cloud computing is increasing in very large scale business organizations to small institutions rapidly due to many advanced features of cloud computing, such as SaaS, PaaS and IaaS service models. So, nowadays, many organizations are trying to implement Cloud Computing based ERP system to enjoy the benefits of cloud computing. To implement any ERP system, an organization usually faces many challenges. As a result, this research has introduced how easily this cloud system can be implemented in an organization. By using this ERP system, an organization can be benefited in many ways;especially Small and Medium Enterprises (SMEs) can enjoy the highest possible benefits from this system.
文摘The article analyses several key issues which restrict the effectiveness of fund project peer review work. It analyses the evaluating theory and matter-element theory to access the expert anti-evaluation model, and also studies the expert anti-evaluation index system to support the anti-evaluation method. The practical basis is the true score data of the experts which is collected from the actual anti-evaluation in Liaoning province science and technology fund project peer review system. With the practical experience of the actual project, we prove that the expert index system anti-evaluation model and expert anti-evaluation method can improve the fund project peer review work and play a positive role for the peer review work and also make the review work more scientific and more rational.
基金Projects(51474252,51274253)supported by the National Natural Science Foundation of ChinaProject(2015CX005)supported by the Innovation Driven Plan of Central South University,ChinaProject(2016zzts095)supported by the Fundamental Research Funds for the Central Universities,China
文摘The method of cloud model with entropy weight was adopted for the prediction of rock burst classification. Some main factors of rock burst including the uniaxial compressive strength (σc), the tensile strength (σt), the tangential stress (σθ), the rock brittleness coefficient (σc/σt), the stress coefficient (σθ /σc) and the elastic energy index (Wet) are chosen to establish evaluation index system. The entropy?cloud model and criterion are obtained through 209 sets of rock burst samples from underground rock projects. The sensitivity of indicators is analyzed and 209 sets of rock burst samples are discriminated by this model. The discriminant results of the entropy-cloud model are compared with those of Bayes, KNN and RF methods. The results show that the sensitivity order of those factors from high to low is σ_θ /σ_c, σ_θ, W_(ct), σ_c/σ_t, σ_t, σ_c, and the entropy-cloud model has higher accuracy than Bayes, K-Nearest Neighbor algorithm (KNN) and Random Forest (RF) methods.
基金The National Natural Science Foundation of China(No.71101014,50679008)Specialized Research Fund for the Doctoral Program of Higher Education(No.200801411105)the Science and Technology Project of the Department of Communications of Henan Province(No.2010D107-4)
文摘Aiming at the real-time fluctuation and nonlinear characteristics of the expressway short-term traffic flow forecasting the parameter projection pursuit regression PPPR model is applied to forecast the expressway traffic flow where the orthogonal Hermite polynomial is used to fit the ridge functions and the least square method is employed to determine the polynomial weight coefficient c.In order to efficiently optimize the projection direction a and the number M of ridge functions of the PPPR model the chaos cloud particle swarm optimization CCPSO algorithm is applied to optimize the parameters. The CCPSO-PPPR hybrid optimization model for expressway short-term traffic flow forecasting is established in which the CCPSO algorithm is used to optimize the optimal projection direction a in the inner layer while the number M of ridge functions is optimized in the outer layer.Traffic volume weather factors and travel date of the previous several time intervals of the road section are taken as the input influencing factors. Example forecasting and model comparison results indicate that the proposed model can obtain a better forecasting effect and its absolute error is controlled within [-6,6] which can meet the application requirements of expressway traffic flow forecasting.
文摘Model reconstruction from points scanned on existing physical objects is much important in a variety of situations such as reverse engineering for mechanical products, computer vision and recovery of biological shapes from two dimensional contours. With the development of measuring equipment, cloud points that contain more details of the object can be obtained conveniently. On the other hand, large quantity of sampled points brings difficulties to model reconstruction method. This paper first presents an algorithm to automatically reduce the number of cloud points under given tolerance. Triangle mesh surface from the simplified data set is reconstructed by the marching cubes algorithm. For various reasons, reconstructed mesh usually contains unwanted holes. An approach to create new triangles is proposed with optimized shape for covering the unexpected holes in triangle meshes. After hole filling, watertight triangle mesh can be directly output in STL format, which is widely used in rapid prototype manufacturing. Practical examples are included to demonstrate the method.
基金National Natural Science Foundation of China(No.61171057,No.61503345)Science Foundation for North University of China(No.110246)+1 种基金Specialized Research Fund for Doctoral Program of Higher Education of China(No.20121420110004)International Office of Shanxi Province Education Department of China,and Basic Research Project in Shanxi Province(Young Foundation)
文摘In order to reduce amount of data storage and improve processing capacity of the system, this paper proposes a new classification method of data source by combining phase synchronization model in network clustering with cloud model. Firstly, taking data source as a complex network, after the topography of network is obtained, the cloud model of each node data is determined by fuzzy analytic hierarchy process (AHP). Secondly, by calculating expectation, entropy and hyper entropy of the cloud model, comprehensive coupling strength is got and then it is regarded as the edge weight of topography. Finally, distribution curve is obtained by iterating the phase of each node by means of phase synchronization model. Thus classification of data source is completed. This method can not only provide convenience for storage, cleaning and compression of data, but also improve the efficiency of data analysis.
基金funded by China Railway No.21 Bureau Group No.1 Engineering Co.,Ltd.,Grant No.202209140002.
文摘Rapid urbanization has led to a surge in the number of towering structures,and overturning is widely used because it can better accommodate the construction of shaped structures such as variable sections.The complexity of the construction process makes the construction risk have certain randomness,so this paper proposes a cloudbased coupled matter-element model to address the ambiguity and randomness in the safety risk assessment of overturning construction of towering structures.In the pretended model,the digital eigenvalues of the cloud model are used to replace the eigenvalues in the matter–element basic element,and calculate the cloud correlation of the risk assessment metrics through the correlation algorithm of the cloud model to build the computational model.Meanwhile,the improved hierarchical analysis method based on the cloud model is used to determine the weight of the index.The comprehensive evaluation scores of the evaluation event are then obtained through the weighted average method,and the safety risk level is determined accordingly.Through empirical analysis,(1)the improved hierarchical analysis method based on the cloud model can incorporate the data of multiple decisionmakers into the calculation formula to determine theweights,which makes the assessment resultsmore credible;(2)the evaluation results of the cloud-basedmatter-element coupledmodelmethod are basically consistent with those of the other two commonly used methods,and the confidence factor is less than 0.05,indicating that the cloudbased physical element coupled model method is reasonable and practical for towering structure overturning;(3)the cloud-based coupled element model method,which confirms the reliability of risk level by performing Spearman correlation on comprehensive assessment scores,can provide more comprehensive information of instances compared with other methods,and more comprehensively reflects the fuzzy uncertainty relationship between assessment indexes,which makes the assessment results more realistic,scientific and reliable.
基金supported by the National Natural Science Foundation of China(Grant No.51379162)the Water Conservancy Science and Technology Innovation Project of Guangdong Province(Grant No.2016-06)
文摘Uncertainties existing in the process of dam deformation negatively influence deformation prediction. However, existing deformation pre- diction models seldom consider uncertainties. In this study, a cloud-Verhulst hybrid prediction model was established by combing a cloud model with the Verhulst model. The expectation, one of the cloud characteristic parameters, was obtained using the Verhulst model, and the other two cloud characteristic parameters, entropy and hyper-entropy, were calculated by introducing inertia weight. The hybrid prediction model was used to predict the dam deformation in a hydroelectric project. Comparison of the prediction results of the hybrid prediction model with those of a traditional statistical model and the monitoring values shows that the proposed model has higher prediction accuracy than the traditional sta- tistical model. It provides a new approach to predicting dam deformation under uncertain conditions.
基金This study was supported by the Grant-in-Aid for Science Research of the Ministry of Education and Culture, Japan, under the Grant No. 08455232.
文摘The motion of particle clouds formed by dumping dredged material into quiescent waters is experimentally and numerically studied. In the numerical model, the particle phase is modeled by the dispersion model, and turbulence is calculated by the large eddy simulation. The governing equations, including the filtered Navier-Stokes equations and mass transport equation, are solved based on the operator-splitting algorithm and an implicit cubic spline interpolation scheme. The eddy viscosity is evaluated by the modified Smagorinsky model including the buoyancy term. Comparisons of main flow characteristics, including shape, size, average density excess, moving speed and the amount of particles deposited on the bed, between experimental and computational results show that the numerical model well predicts the motion of the cloud from the falling to spreading stage. The effects of silt-fence on the motion of the particle cloud are also investigated.
基金Project(E2015203354)supported by Natural Science Foundation of Steel United Research Fund of Hebei Province,ChinaProject(ZD2016100)supported by the Science and the Technology Research Key Project of High School of Hebei Province,China+1 种基金Project(LJRC013)supported by the University Innovation Team of Hebei Province Leading Talent Cultivation,ChinaProject(16LGY015)supported by the Basic Research Special Breeding of Yanshan University,China
文摘The accuracy of present flatness predictive method is limited and it just belongs to software simulation. In order to improve it, a novel flatness predictive model via T-S cloud reasoning network implemented by digital signal processor(DSP) is proposed. First, the combination of genetic algorithm(GA) and simulated annealing algorithm(SAA) is put forward, called GA-SA algorithm, which can make full use of the global search ability of GA and local search ability of SA. Later, based on T-S cloud reasoning neural network, flatness predictive model is designed in DSP. And it is applied to 900 HC reversible cold rolling mill. Experimental results demonstrate that the flatness predictive model via T-S cloud reasoning network can run on the hardware DSP TMS320 F2812 with high accuracy and robustness by using GA-SA algorithm to optimize the model parameter.