A method based on cloud point extraction was developed to determine phthalate esters including di-ethyl-phthalate (DEP), di- (2-ethylhexyl)-phthalate (DEHP) and di-cyclohexyl-phthalate (DCP) in environmental w...A method based on cloud point extraction was developed to determine phthalate esters including di-ethyl-phthalate (DEP), di- (2-ethylhexyl)-phthalate (DEHP) and di-cyclohexyl-phthalate (DCP) in environmental water samples using high-performance liquid chromatography separation and ultraviolet detection (HPLC-UV). The non-ionic surfactant Triton X-114 was chosen as extraction solvent. The parameters affecting extraction efficiency, such as concentrations of Triton X-114 and Na2SO4, equilibration temperature, equilibration time and centrifugation time were evaluated and optimized. Under the optimum conditions, the method can achieve preconcentration factors of 35, 88, 111 and detection of limits of 2.0, 3.8, 1.0 ng/ml for DEP, DEHP and DCP in 10-ml water sample, respectively. The proposed method was successfully applied to the determination of trace amount of phathalate esters in effluent water of the wastewater treatment plant and the lixivium of plastic fragments.展开更多
A novel approach was developed for the determination of ultratrace amounts of copper in water samples by using electrothermal atomic absorption spectrometry (ETAAS) after cloud point extraction ( CPE ). 1-( 2-Pyr...A novel approach was developed for the determination of ultratrace amounts of copper in water samples by using electrothermal atomic absorption spectrometry (ETAAS) after cloud point extraction ( CPE ). 1-( 2-Pyridylazo ) -2- naphthol was used as the chelating reagent and Triton X-114 as the mieellar-forming surfactant. CPE was conducted in a pH 8. 0 medium at 40 ℃ for 10 rain. After the separation of the phases by contrifugafion, the surfactant-rieh phase was diluted with 1 mL of a methanol solution of 0. 1 mol/L HNO3. Then 20μL of the diluted surfactant-rieh phase was injected into the graphite furnace for atomization in the absence of any matrix modifier. Various experimental conditions that affect the extraction and atomization processes were optimized. A detection limit of 5 ng/L was obtained after preconeentration. The linear dynamic range of the copper mass concentration was found to be 0-2.0 ng/mL, and the relative standard deviation was found to be less than 3. 1% for a sample containing 1.0 ng/mL Cu ( Ⅱ ). This developed method was successfully applied to the determination of uhratraee amounts of Cu in drinking water, tap water, and seawater samples.展开更多
Cloud point extraction (CPE) processes with two silicone surfactants, Dow Coming DC-190 and DC-193, were studied as preconcentration and treatment for the water polluted by three trace polycyclic aromatic hydrocarbo...Cloud point extraction (CPE) processes with two silicone surfactants, Dow Coming DC-190 and DC-193, were studied as preconcentration and treatment for the water polluted by three trace polycyclic aromatic hydrocarbons (PAHs): anthracene, phenanthrene and pyrene. For all cases, the volumes of surfactant-rich phase obtained by two silicone surfactants were very small, i.e. a lower water content in the surfactant-rich phase was obtained. For example, less than 3% of the initial solution was obtained in a 1% (by mass) surfactant solution, which was much smaller than that of TX-114 in the same surfactant concentration. And TX-114 is known as a high compact surfactant-rich phase among most nonionic surfactants, thus the comparison showed that an excellent enrichment was ensured in the analysis application by the CPE process with the silicone surfactants, and the lower water content obtained in the surfactant-rich phase is also important in the large scale water treatment. The influences of additives and phase separation methodology on the recovery of PAHs were discussed. Comparing with DC-193, DC-190 has a lower cloud point and a higher recovery (near 100%) of all the three PAHs in same surfactant concentration, which was required for application as a preconcentration process prior to HPLC system. However the DC-190 solution is hard to be phase separated only by heating, whereas DC-193 has a relative higher phase separating speed by heating, but a high cloud point (around 360K) limits its application. Due to the phase separation by heating is the only method of CPE suitable to the large scale water treatment, the mixtures of two silicone surfacrants solutions were investigated in this study. A solution containing 1% of mixed DC-190 and DC-193 (in the ratio of 90 : 10) removed anthracene, phenanthrene and pyrene near 100% with a relative low cloud point and quick phase separating speed.展开更多
Cloud point extraction (CPE) with Tergitol TMN-6 was applied for the extraction of trace amounts of palladium (Pd(Ⅱ)), platinum (Pt(Ⅳ)), and gold (Au(Ⅲ)) in the soil of industrial sewage. Ammonium pyrolysine dithio...Cloud point extraction (CPE) with Tergitol TMN-6 was applied for the extraction of trace amounts of palladium (Pd(Ⅱ)), platinum (Pt(Ⅳ)), and gold (Au(Ⅲ)) in the soil of industrial sewage. Ammonium pyrolysine dithiocarbamate (APDC) was adopted as the chelating agent prior to CPE and then was detected by atomic absorption spectrometry (AAS). Different parameters such as the concentration of surfactants, chelating agent and salt, sample pH, equilibration temperature and time, centrifugation time and rates, and the effect of foreign ions were studied. Under optimum conditions, the low limits of detections are 1.4, 2.8 and 1.2 ng·ml^-1 and the enrichment factors are 21, 12, and 24 for Pd(Ⅱ), Pt(Ⅳ), and Au(Ⅲ, respectively. The relative standard deviations vary from 0.6% to 1.0% (n=11). All correlation coefficients of the calibration curves are >0.9960. The proposed method was successfully applied for the determination of Pd(Ⅱ), Pt(Ⅳ), and Au(Ⅲ) in the real soil of industrial sewage samples.展开更多
A new method based on the cloud point extraction(CPE) for separation and preconcentration of nickel(Ⅱ) and its subsequent determination by graphite furnace atomic absorption spectrometry(GFAAS) was proposed, 8-...A new method based on the cloud point extraction(CPE) for separation and preconcentration of nickel(Ⅱ) and its subsequent determination by graphite furnace atomic absorption spectrometry(GFAAS) was proposed, 8-hydroxyquinoline and Triton X-100 were used as the ligand and surfactant respectively. Nickel(Ⅱ) can form a hy-drophobic complex with 8-hydroxyquinoline, the complex can be extracted into the small volume surfactant rich phase at the cloud point temperature(CPT) for GFAAS determination. The factors affecting the cloud point extraction, such as pH, ligand concentration, surfactant concentration, and the incubation time were optimized. Under the optimal conditions, a detection limit of 12 ng/L and a relative standard deviation(RSD) of 2.9% were obtained for Ni(Ⅱ) determination. The enrichment factor was found to be 25. The proposed method was successfully applied to the determination of nickel(Ⅱ) in certified reference material and different types of water samples and the recovery was in a range of 95%―103%.展开更多
A method for the determination of trace mercury in water samples by hydride generation atomic absorption spectrophotometry after cloud point extraction was proposed in the present work. The effects of pH, concentratio...A method for the determination of trace mercury in water samples by hydride generation atomic absorption spectrophotometry after cloud point extraction was proposed in the present work. The effects of pH, concentration of surfactant, and equilibration time on cloud point extraction were discussed. The enhancement factor of 20 and the detection limit of 0.039 μg/L were obtained for mercury with relative standard deviation of 4.8% (n = 11).展开更多
A new method was developed for the determination of sodium copper chlorophyll(SCC) by cloud point extraction preconcentration and spectrophotometry, for which Triton X-114 was selected as a nonionic surfactant. Severa...A new method was developed for the determination of sodium copper chlorophyll(SCC) by cloud point extraction preconcentration and spectrophotometry, for which Triton X-114 was selected as a nonionic surfactant. Several factors affecting the extraction efficiency of SCC and its subsequent determination, including the p H of the sample solution, salt and surfactant concentrations, and equilibration temperature and time, were studied and optimized. The extraction efficiency approached 99.4%.The calibration graph under the optimum conditions was linear in the concentration range of 3–220 mg/L with correlation coefficients> 0.9997(n = 8). The limit of detection for the analytes was 0.6 mg/L(S/N = 3). The proposed method is inexpensive, simple, and accurate for the extraction and determination of SCC in food samples.展开更多
Recently, cloud point extraction (CPE) coupled with back extraction (BE) has been suggestedas a promising alternative to liquid-liquid extraction. In CPE, non-ionic surfactants in aqueoussolutions form micelles and th...Recently, cloud point extraction (CPE) coupled with back extraction (BE) has been suggestedas a promising alternative to liquid-liquid extraction. In CPE, non-ionic surfactants in aqueoussolutions form micelles and the solution becomes turbid when heated to the cloud pointtemperature. Microwave- or ultrasonic-assisted BE can be performed after CPE and beforeinjection of the sample for instrumental analysis by ultraviolet-visible spectroscopy, high-performance liquid chromatography, gas chromatography, gas chromatography-mass spectrometry, or liquid chromatography-mass spectrometry. This article reviews selected publishedscientific research on the application of CPE-BE to the determination of alkaloids, drugs andorganophosphorus compounds from several complex matrices. This method could bescaled-up for use in forensic science.展开更多
基金Projected supported by the National Basic Research Program (973)of China (No. 2003CB415001)the Pilot Program of KnowledgeInnovation Program of Chinese Academy of Sciences (No. KZCX3-SW-431).
文摘A method based on cloud point extraction was developed to determine phthalate esters including di-ethyl-phthalate (DEP), di- (2-ethylhexyl)-phthalate (DEHP) and di-cyclohexyl-phthalate (DCP) in environmental water samples using high-performance liquid chromatography separation and ultraviolet detection (HPLC-UV). The non-ionic surfactant Triton X-114 was chosen as extraction solvent. The parameters affecting extraction efficiency, such as concentrations of Triton X-114 and Na2SO4, equilibration temperature, equilibration time and centrifugation time were evaluated and optimized. Under the optimum conditions, the method can achieve preconcentration factors of 35, 88, 111 and detection of limits of 2.0, 3.8, 1.0 ng/ml for DEP, DEHP and DCP in 10-ml water sample, respectively. The proposed method was successfully applied to the determination of trace amount of phathalate esters in effluent water of the wastewater treatment plant and the lixivium of plastic fragments.
基金the Analysis and Testing Foundation of Zhejiang Province(No 04045)
文摘A novel approach was developed for the determination of ultratrace amounts of copper in water samples by using electrothermal atomic absorption spectrometry (ETAAS) after cloud point extraction ( CPE ). 1-( 2-Pyridylazo ) -2- naphthol was used as the chelating reagent and Triton X-114 as the mieellar-forming surfactant. CPE was conducted in a pH 8. 0 medium at 40 ℃ for 10 rain. After the separation of the phases by contrifugafion, the surfactant-rieh phase was diluted with 1 mL of a methanol solution of 0. 1 mol/L HNO3. Then 20μL of the diluted surfactant-rieh phase was injected into the graphite furnace for atomization in the absence of any matrix modifier. Various experimental conditions that affect the extraction and atomization processes were optimized. A detection limit of 5 ng/L was obtained after preconeentration. The linear dynamic range of the copper mass concentration was found to be 0-2.0 ng/mL, and the relative standard deviation was found to be less than 3. 1% for a sample containing 1.0 ng/mL Cu ( Ⅱ ). This developed method was successfully applied to the determination of uhratraee amounts of Cu in drinking water, tap water, and seawater samples.
文摘Cloud point extraction (CPE) processes with two silicone surfactants, Dow Coming DC-190 and DC-193, were studied as preconcentration and treatment for the water polluted by three trace polycyclic aromatic hydrocarbons (PAHs): anthracene, phenanthrene and pyrene. For all cases, the volumes of surfactant-rich phase obtained by two silicone surfactants were very small, i.e. a lower water content in the surfactant-rich phase was obtained. For example, less than 3% of the initial solution was obtained in a 1% (by mass) surfactant solution, which was much smaller than that of TX-114 in the same surfactant concentration. And TX-114 is known as a high compact surfactant-rich phase among most nonionic surfactants, thus the comparison showed that an excellent enrichment was ensured in the analysis application by the CPE process with the silicone surfactants, and the lower water content obtained in the surfactant-rich phase is also important in the large scale water treatment. The influences of additives and phase separation methodology on the recovery of PAHs were discussed. Comparing with DC-193, DC-190 has a lower cloud point and a higher recovery (near 100%) of all the three PAHs in same surfactant concentration, which was required for application as a preconcentration process prior to HPLC system. However the DC-190 solution is hard to be phase separated only by heating, whereas DC-193 has a relative higher phase separating speed by heating, but a high cloud point (around 360K) limits its application. Due to the phase separation by heating is the only method of CPE suitable to the large scale water treatment, the mixtures of two silicone surfacrants solutions were investigated in this study. A solution containing 1% of mixed DC-190 and DC-193 (in the ratio of 90 : 10) removed anthracene, phenanthrene and pyrene near 100% with a relative low cloud point and quick phase separating speed.
基金supported by the National Natural Science Foundation of China(No.20961012)the Medical Neurobiology Key Laboratory of Kunming University of Science and Technology,Basic and Applied Research Project in Yunnan Province(No.2008ZC082M)+3 种基金the Analysis and Testing Foundation of Kunming University of Science and Technology(No.2010121)Innovation Fund for Smalland Medium Technology Based Firms(No.11C26215305936)Natural and Science Foundation of Yunnan Province(No.2010ZC027)Focus Fund of Department of Education in Yunnan Province(No.2010Z016)
文摘Cloud point extraction (CPE) with Tergitol TMN-6 was applied for the extraction of trace amounts of palladium (Pd(Ⅱ)), platinum (Pt(Ⅳ)), and gold (Au(Ⅲ)) in the soil of industrial sewage. Ammonium pyrolysine dithiocarbamate (APDC) was adopted as the chelating agent prior to CPE and then was detected by atomic absorption spectrometry (AAS). Different parameters such as the concentration of surfactants, chelating agent and salt, sample pH, equilibration temperature and time, centrifugation time and rates, and the effect of foreign ions were studied. Under optimum conditions, the low limits of detections are 1.4, 2.8 and 1.2 ng·ml^-1 and the enrichment factors are 21, 12, and 24 for Pd(Ⅱ), Pt(Ⅳ), and Au(Ⅲ, respectively. The relative standard deviations vary from 0.6% to 1.0% (n=11). All correlation coefficients of the calibration curves are >0.9960. The proposed method was successfully applied for the determination of Pd(Ⅱ), Pt(Ⅳ), and Au(Ⅲ) in the real soil of industrial sewage samples.
基金Supported by the National Natural Science Foundation of China(No.20075009)
文摘A new method based on the cloud point extraction(CPE) for separation and preconcentration of nickel(Ⅱ) and its subsequent determination by graphite furnace atomic absorption spectrometry(GFAAS) was proposed, 8-hydroxyquinoline and Triton X-100 were used as the ligand and surfactant respectively. Nickel(Ⅱ) can form a hy-drophobic complex with 8-hydroxyquinoline, the complex can be extracted into the small volume surfactant rich phase at the cloud point temperature(CPT) for GFAAS determination. The factors affecting the cloud point extraction, such as pH, ligand concentration, surfactant concentration, and the incubation time were optimized. Under the optimal conditions, a detection limit of 12 ng/L and a relative standard deviation(RSD) of 2.9% were obtained for Ni(Ⅱ) determination. The enrichment factor was found to be 25. The proposed method was successfully applied to the determination of nickel(Ⅱ) in certified reference material and different types of water samples and the recovery was in a range of 95%―103%.
文摘A method for the determination of trace mercury in water samples by hydride generation atomic absorption spectrophotometry after cloud point extraction was proposed in the present work. The effects of pH, concentration of surfactant, and equilibration time on cloud point extraction were discussed. The enhancement factor of 20 and the detection limit of 0.039 μg/L were obtained for mercury with relative standard deviation of 4.8% (n = 11).
文摘A new method was developed for the determination of sodium copper chlorophyll(SCC) by cloud point extraction preconcentration and spectrophotometry, for which Triton X-114 was selected as a nonionic surfactant. Several factors affecting the extraction efficiency of SCC and its subsequent determination, including the p H of the sample solution, salt and surfactant concentrations, and equilibration temperature and time, were studied and optimized. The extraction efficiency approached 99.4%.The calibration graph under the optimum conditions was linear in the concentration range of 3–220 mg/L with correlation coefficients> 0.9997(n = 8). The limit of detection for the analytes was 0.6 mg/L(S/N = 3). The proposed method is inexpensive, simple, and accurate for the extraction and determination of SCC in food samples.
基金This work was supported by Galgotias University.
文摘Recently, cloud point extraction (CPE) coupled with back extraction (BE) has been suggestedas a promising alternative to liquid-liquid extraction. In CPE, non-ionic surfactants in aqueoussolutions form micelles and the solution becomes turbid when heated to the cloud pointtemperature. Microwave- or ultrasonic-assisted BE can be performed after CPE and beforeinjection of the sample for instrumental analysis by ultraviolet-visible spectroscopy, high-performance liquid chromatography, gas chromatography, gas chromatography-mass spectrometry, or liquid chromatography-mass spectrometry. This article reviews selected publishedscientific research on the application of CPE-BE to the determination of alkaloids, drugs andorganophosphorus compounds from several complex matrices. This method could bescaled-up for use in forensic science.