期刊文献+
共找到644篇文章
< 1 2 33 >
每页显示 20 50 100
基于Transformer的道路场景点云分类与分割方法
1
作者 马庆禄 孙枭 +1 位作者 黄筱潇 王江华 《激光与红外》 CAS CSCD 北大核心 2024年第1期17-23,共7页
针对多目标识别过程中点云分类和分割精度不高的问题,提出了一种基于改进Transformer模型的点云分类与分割方法DRPT(Double randomness Point Transformer),该方法在Transformer模型卷积投影层创建新的点嵌入,利用局部邻域的动态处理在... 针对多目标识别过程中点云分类和分割精度不高的问题,提出了一种基于改进Transformer模型的点云分类与分割方法DRPT(Double randomness Point Transformer),该方法在Transformer模型卷积投影层创建新的点嵌入,利用局部邻域的动态处理在数据特征向量中持续增加全局特征属性,从而提高多目标识别中点云分类和分割的精度。实验中采用了标准基准数据集(ModelNet40、ShapeNet部分分割和SemanticKITTI场景语义分割数据集)以验证模型的性能,实验结果表明:DRPT模型的pIoU值为85.9%,比其他模型平均高出3.5%,有效提高了多目标识别检测时点云分类与分割精度,是对智能网联技术发展的有效支撑。 展开更多
关键词 点云识别 道路场景 点云分割 点集嵌入 transformER
下载PDF
CT-CloudDetect:用于遥感卫星云检测的混合模型
2
作者 方巍 陶恩屹 《遥感信息》 CSCD 北大核心 2024年第5期1-11,共11页
云检测是在遥感卫星云图中检测云的任务。近年来,人们提出了基于深度学习的云检测方法,并取得了良好的性能。然而,现有的基于深度学习的云检测模型大多还是基于卷积神经网络(convolutional neural network,CNN),由于卷积运算的固有局部... 云检测是在遥感卫星云图中检测云的任务。近年来,人们提出了基于深度学习的云检测方法,并取得了良好的性能。然而,现有的基于深度学习的云检测模型大多还是基于卷积神经网络(convolutional neural network,CNN),由于卷积运算的固有局部性,难以捕获长距离依赖关系。针对上述问题,文章提出一个基于CNN和ViT(Vision Transformer)的混合型云检测模型,并提出一种基于CNN和ViT的编码器,使网络具备捕捉局部和全局信息的能力。为了更好地融合语义和尺度不一致的特征,提出了一个双尺度注意力融合模块,通过注意力机制有选择地融合特征。此外,提出了轻量级路由解码器,该解码器通过路由结构降低模型复杂度。在3个公开云检测数据集上对模型进行了评估。大量实验表明,所提出的模型具有比现有模型更好的性能。 展开更多
关键词 深度学习 卷积神经网络 空间Vision transformer 混合模型 云检测
下载PDF
融合图像信息的跨模态Transformer点云补全算法
3
作者 何星 朱哲 +3 位作者 燕雪峰 郭延文 宫丽娜 魏明强 《计算机辅助设计与图形学学报》 EI CSCD 北大核心 2024年第7期1026-1033,共8页
针对三维传感器(如LiDAR、深度相机)获取的点云往往残缺不全,需要进行补全处理,而单模态方法存在的补全结果细节不丰富、结构不完整等问题,提出一种融合图像信息的跨模态Transformer点云补全算法.首先采用点云分支和图像分支分别提取点... 针对三维传感器(如LiDAR、深度相机)获取的点云往往残缺不全,需要进行补全处理,而单模态方法存在的补全结果细节不丰富、结构不完整等问题,提出一种融合图像信息的跨模态Transformer点云补全算法.首先采用点云分支和图像分支分别提取点云特征和图像特征,其中,点云分支采用PoinTr为骨干网络,图像分支采用7层卷积;然后通过特征融合模块融合点云特征和图像特征,由粗到精地生成全分辨率的点云.在ShapeNet-ViPC数据集上进行实验的结果表明,所提算法的可视化结果优于单模态点云补全方法和目前仅有的跨模态点云补全方法ViPC,且在大部分测试类别上的CD-L_(2)量化指标优于ViPC;平均CD-L_(2)为2.74,比ViPC低17%.为了便于研究人员评估和使用,文中算法可通过https://github.com/Starak-x/ImPoinTr开源获取. 展开更多
关键词 点云补全 transformER 跨模态
下载PDF
基于Transformer的点云几何有损压缩方法
4
作者 刘舸昕 章骏腾 丁丹丹 《北京航空航天大学学报》 EI CAS CSCD 北大核心 2024年第2期634-642,共9页
点云被广泛地用于三维物体表达,不过真实世界采集到的点云往往数据庞大,不利于传输与储存,针对点云数据冗余性问题,引入基于注意力机制的Transformer模块,提出一种基于Transformer的端到端多尺度点云几何压缩方法。将点云进行体素化,在... 点云被广泛地用于三维物体表达,不过真实世界采集到的点云往往数据庞大,不利于传输与储存,针对点云数据冗余性问题,引入基于注意力机制的Transformer模块,提出一种基于Transformer的端到端多尺度点云几何压缩方法。将点云进行体素化,在编码端利用稀疏卷积提取特征,进行多尺度的逐步下采样,结合Transformer模块加强点空间特征感知与提取;在解码端进行对应的多尺度上采样重建,同样采用Transformer模块对有用特征进行加强与恢复,逐步细化并重建点云。与2种点云标准编码方法对比,所提方法平均获得80%和75%的BD-Rate增益;与基于深度学习的点云压缩方法对比,平均获得16%的BD-Rate增益,在相同码率点有约0.6的PSNR提升。实验结果表明:Transformer在点云压缩领域的可行性与有效性;在主观质量方面,所提方法也有明显的主观效果提升,重建的点云更接近原始点云。 展开更多
关键词 点云几何压缩 transformER 注意力机制 深度学习 稀疏卷积
下载PDF
多级Transformer特征融合的三维点云目标跟踪
5
作者 李志杰 梁卜文 +1 位作者 丁昕苗 郭文 《计算机科学与探索》 CSCD 北大核心 2024年第11期3006-3014,共9页
三维点云目标跟踪的过程中时常会出现遮挡、稀疏性和随机噪声等问题。为了解决这些问题,提出了一种新颖的多级Transformer特征融合的三维点云目标跟踪方法。该方法主要由点注意嵌入模块和点注意力增强模块组成,且这两个模块分别用于特... 三维点云目标跟踪的过程中时常会出现遮挡、稀疏性和随机噪声等问题。为了解决这些问题,提出了一种新颖的多级Transformer特征融合的三维点云目标跟踪方法。该方法主要由点注意嵌入模块和点注意力增强模块组成,且这两个模块分别用于特征提取和特征匹配的过程中。通过将两个注意力机制相互嵌入构成点注意力嵌入模块,并将其和PTTR所提出的关系感知采样法融合,实现充分提取特征的目的。将提取到的特征信息输入点注意力增强模块中,通过交叉注意力机制对不同层次的特征依次匹配,达到全局特征和局部特征深度融合的目标。为了获取判别性特征融合图,利用残差网络的方式对不同层的融合结果进行连接。将特征融合图输入目标预测的模块中,实现对最终3D目标对象的精准预测。在KITTI数据集、nuScenes数据集和Waymo数据集上的实验验证了该方法的有效性。若不计小样本数据,在目标跟踪的成功值中该方法平均提高了1.4个百分点,在跟踪的精确值上也提高了1.4个百分点。 展开更多
关键词 3D点云 孪生网络 目标跟踪 transformER 特征融合
下载PDF
基于Luby Transform码云存储系统性能和时间算法的研究
6
作者 陈海彬 《成都工业学院学报》 2024年第5期47-53,共7页
随着数据的快速增长,如何提高存储数据可靠性以及减少存取响应时间成了一个重要的问题,为提高云存储数据的可靠性和减少存取响应时间,对一种基于Luby Transform码的云存储方案在鲁棒孤子分布、泊松鲁棒孤子分布和复合泊松鲁棒孤子分布... 随着数据的快速增长,如何提高存储数据可靠性以及减少存取响应时间成了一个重要的问题,为提高云存储数据的可靠性和减少存取响应时间,对一种基于Luby Transform码的云存储方案在鲁棒孤子分布、泊松鲁棒孤子分布和复合泊松鲁棒孤子分布中的性能表现进行了研究,提出了一种时间改进方法,通过平衡成功解码概率和检索延迟减少数据检索时间。实验证明采用泊松鲁棒孤子分布和复合泊松鲁棒孤子分布的Luby Transform码的云存储方案更可靠、存储更快速,提出的时间改进方法与经典的鲁棒孤子分布度时间方法相比分别减少70%和67%的数据检索时间。 展开更多
关键词 云存储 Luby transform 度分布
下载PDF
猪三维点云体尺自动计算模型Pig Back Transformer
7
作者 王宇啸 石源源 +4 位作者 陈招达 吴珍芳 蔡更元 张素敏 尹令 《智慧农业(中英文)》 CSCD 2024年第4期76-90,共15页
[目的/意义]为了提高体尺关键点定位准确率,猪三维点云体尺自动测量方法会采用点云分割,在各个分割后局部点云定位测量关键点,以减少点云之间相互干扰。然而点云分割网络通常需要消耗较大计算资源,且现有测量点定位效果仍有待提升空间... [目的/意义]为了提高体尺关键点定位准确率,猪三维点云体尺自动测量方法会采用点云分割,在各个分割后局部点云定位测量关键点,以减少点云之间相互干扰。然而点云分割网络通常需要消耗较大计算资源,且现有测量点定位效果仍有待提升空间。本研究旨在通过设计关键点生成网络从猪体点云中提取出各体尺测量所需关键点。在降低显存资源需求的同时提高测量关键点定位效果,提高体尺测量的效率和精度。[方法]针对猪三维表面点云进行体尺测量,提出了一种定位猪体尺关键点的模型Pig Back Transformer。模型分为两个模块,分别设计了两种改进的Transformer自注意力编码器,第一模块为全局关键点模块,首先设计了一种猪背部边缘点提取算法用于获取边缘点,再使用edge encoder编码器以边缘点集合作为输入,edge encoder的edge attention中加入了边缘点和质点的偏移距离信息;第二模块为关键点生成模块,使用了back attention机制的back encoder,其中加入了与质心和第一模块生成的全局关键点的偏移量,并将偏移量与点云注意力通过按位max pooling操作结合,最后通过生成猪的体尺测量关键点和背脊走向点。最后设计了使用关键点和背脊走向点作为输入的体尺算法。[结果和讨论]对比关键点和背脊走向点生成任务上Pig Back Transformer表现最佳,并对比体尺计算结果与人工测量结果,体长相对误差为0.63%,相对PointNet++、Point Transformer V2、Point Cloud Transforme、OctFormer PointTr等模型有较大提升。[结论] Pig Back Transformer能相对准确地生成猪体尺关键点,提高体尺测量数据准确度,并且通过点云特征定位体尺关键点节省了计算资源,为无接触牲畜体尺测量提供了新思路。 展开更多
关键词 Pig Back transformer 三维点云 体尺自动测量 测量关键点定位 深度相机 自注意力机制
下载PDF
特征注意力Transformer模块在3D唇语序列身份识别中的应用
8
作者 骈鑫洋 王瑜 张洁 《计算机工程与应用》 CSCD 北大核心 2024年第7期141-146,共6页
唇语行为是一种新兴起的生物特征识别技术,三维(three-dimensional,3D)唇语点云序列因包含真实嘴唇空间结构和运动信息,已成为个体身份识别的重要生物特征。但是,3D点云的无序与非结构化的特点导致时空特征的提取非常困难。为此,提出一... 唇语行为是一种新兴起的生物特征识别技术,三维(three-dimensional,3D)唇语点云序列因包含真实嘴唇空间结构和运动信息,已成为个体身份识别的重要生物特征。但是,3D点云的无序与非结构化的特点导致时空特征的提取非常困难。为此,提出一种深度学习网络模型,用于3D唇语序列身份识别。该网络采用四层改进的PointNet++作为网络骨干,以分层方式抽取特征,为了学习到更多包含身份信息的时空特征,设计一种动态唇特征注意力Transformer模块,连接于PointNet++网络每一层之后,可以学习到不同特征图之间的相关信息,有效捕捉视频序列不同帧的上下文信息。与其他注意力机制构建的Transformer相比,提出的Transformer模块具有较少的参数,在S3DFM-FP和S3DFM-VP数据集上进行的实验表明,提出网络模型在3D唇语点云序列的身份识别任务中效果显著,即使在不受姿态约束的S3DFM-VP数据集中也表现出良好的性能。 展开更多
关键词 说话人识别 transformER PointNet++ 三维唇语点云
下载PDF
基于Point Transformer v2的点云枝叶分离方法研究
9
作者 马津 陈一平 +3 位作者 韩汀 王朝磊 张小海 张吴明 《航天返回与遥感》 CSCD 北大核心 2024年第3期62-72,共11页
准确高效的点云枝叶分离对精确计算森林树木的垂直参数至关重要。然而,当前的研究方法计算成本高,且依赖先验知识导致泛化能力不足。针对以上问题,文章提出利用基于点特征的Transformer网络进行自动化的森林场景三维点云的枝叶分离研究... 准确高效的点云枝叶分离对精确计算森林树木的垂直参数至关重要。然而,当前的研究方法计算成本高,且依赖先验知识导致泛化能力不足。针对以上问题,文章提出利用基于点特征的Transformer网络进行自动化的森林场景三维点云的枝叶分离研究。该方法使用Point Transformer v2网络,首先利用网格编码模块提取可学习的局部结构关系,保留点云的几何拓扑结构;其次使用分组注意力实现多通道联合学习,降低特征的冗余度,提高计算的效率;最后构建了基于点的Transformer网络实现高精度森林树木三维点云语义分割,降低了对于先验知识的需求。使用地基激光扫描仪获取的加拿大和芬兰7个不同树种样地的三维点云数据,进行枝叶分离实验和精度评价。实验结果表明,网络整体精度(OA)为94.42%,mIoU为78.89%,能够适应不同树种、不同点云密度的森林场景的枝叶分离。 展开更多
关键词 三维点云 深度学习 枝叶分离 POINT transformER V2
下载PDF
融合Transformer与多阶段学习框架的点云上采样网络
10
作者 李泽锴 柏正尧 +2 位作者 肖霄 张奕涵 尤逸琳 《计算机科学》 CSCD 北大核心 2024年第6期231-238,共8页
借鉴Transformer在自然语言和计算机视觉领域强大的特征编码能力,同时受多阶段学习框架的启发,设计了一种融合Transformer与多阶段学习框架的点云上采样网络——MSPUiT。该网络采用二阶段网络模型,第一阶段是密集点生成网络,利用多层Tra... 借鉴Transformer在自然语言和计算机视觉领域强大的特征编码能力,同时受多阶段学习框架的启发,设计了一种融合Transformer与多阶段学习框架的点云上采样网络——MSPUiT。该网络采用二阶段网络模型,第一阶段是密集点生成网络,利用多层Transformer编码器逐步实现从输入点云的局部几何信息、局部特征信息到点云高级语义特征的转换,特征扩充模块在特征空间中,对点云特征上采样,坐标回归模块将点云从特征空间重新映射回欧氏空间中初步生成密集点云M′;第二阶段是逐点优化网络,使用Transformer编码器对密集点云M′中潜藏的语义特征进行编码,联合上一阶段语义特征得到点云完整的语义特征,特征精炼单元从M′的几何信息和语义特征中提取点的误差信息特征,误差回归模块从误差信息特征中计算得到欧氏空间中点的坐标偏移量,实现对点云M′的逐点优化,使得点云上点的分布更加均匀,并且更加贴近真实物体表面。在大型合成数据集PU1K上进行了大量实验,MSPUiT生成的高分辨率点云在倒角距离(CD)、豪斯多夫距离(HD)、生成点云到原始点云块的距离(P2F)上的指标分别降至0.501×10^(-3),5.958×10^(-3),1.756×10^(-3)。实验结果表明,MSPUiT上采样后的点云表面更加光滑,噪声点更少,生成的点云质量高于当前主流的点云上采样网络。 展开更多
关键词 transformer编码器 多阶段学习框架 特征转换 点云上采样 深度学习
下载PDF
融合Swin Transformer与UNet的云检测架构 被引量:2
11
作者 谢国波 何宇钦 +2 位作者 林志毅 唐晶晶 文刚 《遥感信息》 CSCD 北大核心 2023年第3期1-8,共8页
目前在遥感图像云检测的领域中,对于薄云和碎云以及不同下垫面的云检测精度还有待进一步提高,且存在较多误判漏判和数据不均衡等问题。针对这些问题,提出了一个结合Transformer和卷积思想的云检测网络架构Cloud TransUnet。首先,使用Tra... 目前在遥感图像云检测的领域中,对于薄云和碎云以及不同下垫面的云检测精度还有待进一步提高,且存在较多误判漏判和数据不均衡等问题。针对这些问题,提出了一个结合Transformer和卷积思想的云检测网络架构Cloud TransUnet。首先,使用Transformer模块替换掉UNet编码器阶段的卷积模块,利用Transformer的全局注意力机制提取出更多的细节特征信息,减少误判和漏判的发生;同时,添加边缘检测模块,加强对边缘信息的提取,提高检测的精度;最后,使用中值频率平衡对损失函数进行改进以处理数据不平衡的问题。实验结果表明,Cloud TransUnet对薄云和碎云的检测、不同下垫面的云检测都具有良好的表现,与卷积语义分割网络UNet、SegNet、ResUnet和Swin_Unet相比,Cloud TransUnet在检测速度略微提升的同时,其MIoU、总体精度、精确率等指标都得到了一定的提升。 展开更多
关键词 云检测 UNet Swin transformer 损失函数 边缘检测网络
下载PDF
基于点云补全和多分辨Transformer的弱感知目标检测方法 被引量:2
12
作者 周静 胡怡宇 +1 位作者 胡成玉 王天江 《计算机应用》 CSCD 北大核心 2023年第7期2155-2165,共11页
针对远距离或遮挡场景中形状缺失的弱感知目标的检测精确率低下的问题,提出一种基于点云补全和多分辨Transformer的弱感知目标检测方法(WP-CMT)。首先,考虑到目标检测网络中的下采样卷积操作会导致部分关键信息的丢失,选取具有反卷积上... 针对远距离或遮挡场景中形状缺失的弱感知目标的检测精确率低下的问题,提出一种基于点云补全和多分辨Transformer的弱感知目标检测方法(WP-CMT)。首先,考虑到目标检测网络中的下采样卷积操作会导致部分关键信息的丢失,选取具有反卷积上采样结构的部分感知聚合(Part-A2)方法作为基础网络以生成初始候选框;然后,为增强初始候选框中的弱感知目标形状及位置特征,采用点云补全模块重构弱感知目标表面的密集点集,并构建新颖的多分辨Transformer特征编码模块来聚合弱感知目标的补全形状特征和原始空间位置信息,通过逐步编码不同分辨率局部坐标点集上的聚合特征的上下文语义相关性来捕获弱感知目标增强的局部特征,最终生成精细化的目标检测框。实验结果表明:对于KITTI和Waymo数据集中的弱感知困难级别目标,WP-CMT的平均精确率和平均精确率均值分别比基准方法Part-A2提升了2.51和1.59个百分点,验证了该方法对弱感知目标检测的有效性。同时,消融实验结果表明WP-CMT中的点云补全和多分辨Transformer特征编码模块对于不同类型的区域候选网络(RPN)结构均能有效提升弱感知目标的检测性能。 展开更多
关键词 三维目标检测 弱感知目标 点云补全 特征编码 多分辨transformer
下载PDF
基于Transformer的体素化激光点云目标检测算法 被引量:7
13
作者 康自祥 王升哲 +2 位作者 崔雨勇 高欣仪 陈旺成 《激光与红外》 CAS CSCD 北大核心 2023年第2期202-207,共6页
3D点云目标检测是计算机3D视觉中的一个关键技术,本文针对激光雷达点云数据的稀疏性、无序性和数据量大,导致神经网络运算效率慢、检测精度低等问题,开展了基于激光雷达点云的目标检测算法研究。在激光雷达点云数据处理阶段,我们将原始... 3D点云目标检测是计算机3D视觉中的一个关键技术,本文针对激光雷达点云数据的稀疏性、无序性和数据量大,导致神经网络运算效率慢、检测精度低等问题,开展了基于激光雷达点云的目标检测算法研究。在激光雷达点云数据处理阶段,我们将原始点云数据体素化,解决了点云稀疏性和无序性问题,然后使用多层特征下采样层构建特征金字塔,实验验证了该方法使网络在训练阶段更快收敛,有效减少点云数据量大导致的网络运算开销,网络运算效率提升~39%;同时,我们通过引入Transformer注意力模块,提高网络对点云目标关键特征的学习能力,使目标检测的准确率达到88.5%。总体实验结果表明,本文算法在确保检测精度的前提下,提升了网络运算效率。 展开更多
关键词 深度学习 transformER 体素 点云 目标检测
下载PDF
Realization of -bit semiclassical quantum Fourier transform on IBM's quantum cloud computer 被引量:1
14
作者 Xiang-Qun Fu Wan-Su Bao +5 位作者 He-Liang Huang Tan Li Jian-Hong Shi Xiang Wang Shuo Zhang Feng-Guang Li 《Chinese Physics B》 SCIE EI CAS CSCD 2019年第2期117-122,共6页
To overcome the difficulty of realizing large-scale quantum Fourier transform(QFT) within existing technology, this paper implements a resource-saving method(named t-bit semiclassical QFT over Z_(2~n)), which could re... To overcome the difficulty of realizing large-scale quantum Fourier transform(QFT) within existing technology, this paper implements a resource-saving method(named t-bit semiclassical QFT over Z_(2~n)), which could realize large-scale QFT using an arbitrary-scale quantum register. By developing a feasible method to realize the control quantum gate Rk, we experimentally realize the 2-bit semiclassical QFT over Z_(2~3) on IBM's quantum cloud computer, which shows the feasibility of the method. Then, we compare the actual performance of 2-bit semiclassical QFT with standard QFT in the experiments.The squared statistical overlap experimental data shows that the fidelity of 2-bit semiclassical QFT is higher than that of standard QFT, which is mainly due to fewer two-qubit gates in the semiclassical QFT. Furthermore, based on the proposed method, N = 15 is successfully factorized by implementing Shor's algorithm. 展开更多
关键词 QUANTUM cloud computation QUANTUM FOURIER transform SEMICLASSICAL QUANTUM FOURIER transform Shor’s algorithm
下载PDF
基于局部邻域Transformer的点云特征提取方法
15
作者 张海博 沈洋 +2 位作者 许浩 包艳霞 刘江 《软件工程》 2023年第6期24-29,35,共7页
受点云非结构化、无序性等特性的影响,一些现有的自注意力方法不能充分提取上下文语意特征,基于此提出了一种用于点云特征提取的局部邻域Transformer(Local Neighborhood Transformer, LNT)。首先,通过最远点采样(FPS)和K最近邻算法(KNN... 受点云非结构化、无序性等特性的影响,一些现有的自注意力方法不能充分提取上下文语意特征,基于此提出了一种用于点云特征提取的局部邻域Transformer(Local Neighborhood Transformer, LNT)。首先,通过最远点采样(FPS)和K最近邻算法(KNN)对点云进行邻域划分。其次,结合相对位置编码,在各个邻域内计算局部自注意力,达到线性计算复杂度。最后,通过连接操作以及线性层捕获点云局部特征。此外,设计了点云多特征融合方法对各层特征信息进行聚合,以提高模型的性能。实验结果表明:该方法在ModelNet40数据集中分类的总体精度可达到93.3%,比PCT提升了0.1%;类平均精度可达到92.0%,比PointMLP提升了0.6%。同时,在ShapeNet数据集中的点云分割结果也是有效的。 展开更多
关键词 点云处理 transformER 特征融合 神经网络
下载PDF
Retrieval algorithm of quantitative analysis of passive Fourier transform infrared (FTRD) remote sensing measurements of chemical gas cloud from measuring the transmissivity by passive remote Fourier transform infrared 被引量:3
16
作者 刘志明 刘文清 +4 位作者 高闽光 童晶晶 张天舒 徐亮 魏秀丽 《Chinese Physics B》 SCIE EI CAS CSCD 2008年第11期4184-4192,共9页
Passive Fourier transform infrared (FTIR) remote sensing measurement of chemical gas cloud is a vital technology. It takes an important part in many fields for the detection of released gases. The principle of conce... Passive Fourier transform infrared (FTIR) remote sensing measurement of chemical gas cloud is a vital technology. It takes an important part in many fields for the detection of released gases. The principle of concentration measurement is based on the Beer-Lambert law. Unlike the active measurement, for the passive remote sensing, in most cases, the difference between the temperature of the gas cloud and the brightness temperature of the background is usually a few kelvins. The gas cloud emission is almost equal to the background emission, thereby the emission of the gas cloud cannot be ignored. The concentration retrieval algorithm is quite different from the active measurement. In this paper, the concentration retrieval algorithm for the passive FTIR remote measurement of gas cloud is presented in detail, which involves radiative transfer model, radiometric calibration, absorption coefficient calculation, et al. The background spectrum has a broad feature, which is a slowly varying function of frequency. In this paper, the background spectrum is fitted with a polynomial by using the Levenberg-Marquardt method which is a kind of nonlinear least squares fitting algorithm. No background spectra are required. Thus, this method allows mobile, real-time and fast measurements of gas clouds. 展开更多
关键词 passive remote measurement Fourier transform infrared (FTIR) gas cloud sensing concentration retrieval
下载PDF
基于Transformer和多尺度的点云去噪
17
作者 孔大力 江平 《大学数学》 2023年第4期7-15,共9页
针对三维点云数据在获取过程中会包含噪声,影响下游任务精度的问题,文章提出了一种基于Transformer和多尺度的点云去噪方法.利用多尺度提取邻域特征,通过使用基于偏移注意力的Transformer网络获取局部和全局信息,增强特征提取能力.此外... 针对三维点云数据在获取过程中会包含噪声,影响下游任务精度的问题,文章提出了一种基于Transformer和多尺度的点云去噪方法.利用多尺度提取邻域特征,通过使用基于偏移注意力的Transformer网络获取局部和全局信息,增强特征提取能力.此外,为了更好地保护尖锐特征,引入了投影损失.文章不仅在合成数据上进行评估,还在真实扫描数据上进行测试.实验表明,文章方法在定量和定性方面均取得了良好的结果. 展开更多
关键词 点云去噪 transformer网络 多尺度 K近邻 偏移注意力
下载PDF
Transformer’s Condition Assessment Method Based on Combination of Cloud Matter Element and Principal Component Analysis 被引量:1
18
作者 Qianli Hong Jiantao Zhang +4 位作者 Qing Xie Shaodong Liang Yuqin Xu Si Li Weitao Hu 《Energy and Power Engineering》 2017年第4期659-666,共8页
With the development of power grid, as one of the key equipment, the transformer’s condition assessment method has always receive attention from experts, scholars concern more and more about the method’s practicalit... With the development of power grid, as one of the key equipment, the transformer’s condition assessment method has always receive attention from experts, scholars concern more and more about the method’s practicality and reliability. In the traditional condition assessment method, due to the characteristics of the transformer’s complex structure, the assessment system is not comprehensive enough, or the assessment system is too complex, the indexes are not easy to quantify, such problems are emerging. The traditional method is complex and the degree of quantification is not enough. Therefore it is necessary to propose a condition assessment method that is easy to carry out the condition assessment work and does not affect the assessment results. In this paper, we propose a method to assess the state of the transformer’s complex structure. First, we establish a comprehensive assessment system, then apply the method of principal component analysis to optimize the index system, and then use the theory of cloud-matter-element. Finally the reliability and rationality of the method are verified by an example. 展开更多
关键词 transformER Assessment Method PRINCIPLE Component Analysis cloud Model
下载PDF
任务驱动的轻量Transformer点云下采样方法
19
作者 杨亚坤 王安红 冯泽文 《计算机工程与应用》 CSCD 北大核心 2023年第21期159-166,共8页
点云是一种重要的三维数据格式,能直观地描绘真实世界,然而点云的巨大数据量限制了其更加广泛的应用。为了简化点云并提高下游应用效率,提出了一种基于轻量级Transformer的任务驱动点云下采样方法。该网络包括特征提取模块和软采样模块... 点云是一种重要的三维数据格式,能直观地描绘真实世界,然而点云的巨大数据量限制了其更加广泛的应用。为了简化点云并提高下游应用效率,提出了一种基于轻量级Transformer的任务驱动点云下采样方法。该网络包括特征提取模块和软采样模块,在特征提取模块中采用最先进的Transformer模型学习点云特征,考虑到计算和存储资源有限,将其设计为轻量化结构;在软采样模块中利用MLP和Gumbel-Softmax来模拟实际采样过程,得到下采样点云。为使采样点云适合后续应用任务,构造了一个包含任务损失、采样损失和约束损失的联合损失函数用于网络端到端训练。此外,为简化训练并方便实际应用,在基于轻量化Transformer的任务驱动点云下采样网络的基础上,还提出了多倍率下采样方法,它采用渐进式结构,结合多组采样损失,实现一个模型得到多个采样率下的点云。通过在ModelNet40和ShapeNetCore55数据集上进行点云分类任务和重建任务实验表明,所提方法在简化点云数量的同时,分类精度和重建精度得到良好保证,尤其是下采样点数较少时,相比于同类算法,任务性能更高。 展开更多
关键词 三维点云 下采样 任务驱动 多倍率 transformER
下载PDF
尾矿坝位移分级预警阈值研究及规律分析
20
作者 胡少华 曹思佳 袁友翠 《安全与环境学报》 CAS CSCD 北大核心 2024年第2期511-516,共6页
针对尾矿坝在线监测重建设、轻利用的现状,基于尾矿坝位移在线监测时间序列,通过多步逆向云变换算法(Multi-step Backward Cloud Transformation Algorithm Based on Sampling with Replacement,MBCT-SR)改进云模型,根据“3E_(n)原则”... 针对尾矿坝在线监测重建设、轻利用的现状,基于尾矿坝位移在线监测时间序列,通过多步逆向云变换算法(Multi-step Backward Cloud Transformation Algorithm Based on Sampling with Replacement,MBCT-SR)改进云模型,根据“3E_(n)原则”和内外包络曲线确定在线监测位移的正常运行值,从而建立尾矿坝位移分级预警阈值模型,并利用某尾矿坝全球导航卫星(Global Navigation Satellite System,GNSS)技术表面位移在线监测数据进行实例验证。结果表明:该尾矿坝水平方向位移的黄、橙、红预警阈值分别为8.41 mm/d、12.94 mm/d、19.41 mm/d,呈现出坝体中间预警阈值最大、并由中间向两侧减小的空间变化规律;尾矿坝垂直方向位移的黄、橙、红预警阈值分别为16.56 mm/d、25.48 mm/d、38.22 mm/d,且随着子坝的堆积,预警阈值逐渐增大。 展开更多
关键词 安全工程 尾矿坝 分级预警 多步逆向云变换算法(MBCT-SR) 阈值 空间分布
下载PDF
上一页 1 2 33 下一页 到第
使用帮助 返回顶部