Important?information pertaining to emergencies and responses to?the?emergencies is often distributed across numerous Internet sites. In the event of a disaster like an earthquake, rapid access to such information is ...Important?information pertaining to emergencies and responses to?the?emergencies is often distributed across numerous Internet sites. In the event of a disaster like an earthquake, rapid access to such information is critical. At such moments the general public usually has a hard time navigating through numerous sites to retrieve and integrate information, and this may?severely affect our capability to make?critical decisions in a timely manner. Common earthquake mashups often lack relevant information like locations of first responders and routing to important facilities (e.g. hospitals and fire stations) which could save important time and lives. To address the challenges, we developed an Earthquake Information Mashup prototype. This prototype demonstrates a mashup approach to providing?a Web visualization of real-time earthquake monitoring and complementary information, such as traffic conditions, the location of important facilities and routing to them. It also offers users the ability to communicate local condition. Users are thus able to better integrate information from various near real-time sources, obtain better situational awareness, and make?smarter?informed?critical decisions.展开更多
Global challenges(such as economy and natural hazards)and technology advancements have triggered international leaders and organizations to rethink geosciences and Digital Earth in the new decade.The next generation v...Global challenges(such as economy and natural hazards)and technology advancements have triggered international leaders and organizations to rethink geosciences and Digital Earth in the new decade.The next generation visions pose grand challenges for infrastructure,especially computing infrastructure.The gradual establishment of cloud computing as a primary infrastructure provides new capabilities to meet the challenges.This paper reviews research conducted using cloud computing to address geoscience and Digital Earth needs within the context of an integrated Earth system.We also introduce the five papers selected through a rigorous review process as exemplar research in using cloud capabilities to address the challenges.The literature and research demonstrate that spatial cloud computing provides unprecedented new capabilities to enable Digital Earth and geosciences in the twenty-first century in several aspects:(1)virtually unlimited computing power for addressing big data storage,sharing,processing,and knowledge discovering challenges,(2)elastic,flexible,and easy-to-use computing infrastructure to facilitate the building of the next generation geospatial cyberin-frastructure,CyberGIS,CloudGIS,and Digital Earth,(3)seamless integration environment that enables mashing up observation,data,models,problems,and citizens,(4)research opportunities triggered by global challenges that may lead to breakthroughs in relevant fields including infrastructure building,GIScience,computer science,and geosciences,and(5)collaboration supported by cloud computing and across science domains,agencies,countries to collectively address global challenges from policy,management,system engineering,acquisition,and operation aspects.展开更多
文摘Important?information pertaining to emergencies and responses to?the?emergencies is often distributed across numerous Internet sites. In the event of a disaster like an earthquake, rapid access to such information is critical. At such moments the general public usually has a hard time navigating through numerous sites to retrieve and integrate information, and this may?severely affect our capability to make?critical decisions in a timely manner. Common earthquake mashups often lack relevant information like locations of first responders and routing to important facilities (e.g. hospitals and fire stations) which could save important time and lives. To address the challenges, we developed an Earthquake Information Mashup prototype. This prototype demonstrates a mashup approach to providing?a Web visualization of real-time earthquake monitoring and complementary information, such as traffic conditions, the location of important facilities and routing to them. It also offers users the ability to communicate local condition. Users are thus able to better integrate information from various near real-time sources, obtain better situational awareness, and make?smarter?informed?critical decisions.
基金Research is supported by State Administration of Foreign Experts Affairs(20120464001)NSF(IIP-1160979 and CNS-1117300)+1 种基金FGDC(GeoCloud and GEOSS Clearinghouse)Microsoft Research.
文摘Global challenges(such as economy and natural hazards)and technology advancements have triggered international leaders and organizations to rethink geosciences and Digital Earth in the new decade.The next generation visions pose grand challenges for infrastructure,especially computing infrastructure.The gradual establishment of cloud computing as a primary infrastructure provides new capabilities to meet the challenges.This paper reviews research conducted using cloud computing to address geoscience and Digital Earth needs within the context of an integrated Earth system.We also introduce the five papers selected through a rigorous review process as exemplar research in using cloud capabilities to address the challenges.The literature and research demonstrate that spatial cloud computing provides unprecedented new capabilities to enable Digital Earth and geosciences in the twenty-first century in several aspects:(1)virtually unlimited computing power for addressing big data storage,sharing,processing,and knowledge discovering challenges,(2)elastic,flexible,and easy-to-use computing infrastructure to facilitate the building of the next generation geospatial cyberin-frastructure,CyberGIS,CloudGIS,and Digital Earth,(3)seamless integration environment that enables mashing up observation,data,models,problems,and citizens,(4)research opportunities triggered by global challenges that may lead to breakthroughs in relevant fields including infrastructure building,GIScience,computer science,and geosciences,and(5)collaboration supported by cloud computing and across science domains,agencies,countries to collectively address global challenges from policy,management,system engineering,acquisition,and operation aspects.