针对传统消防监控系统存在开发成本高、误警率高、实时监控不便的问题,提出一种基于物联网云平台的智慧消防远程监控系统。采用STM32单片机作为中枢控制芯片,经多传感器采集温度、湿度、烟雾、火焰等环境数据,通过窄带物联网(NB-IoT,Nar...针对传统消防监控系统存在开发成本高、误警率高、实时监控不便的问题,提出一种基于物联网云平台的智慧消防远程监控系统。采用STM32单片机作为中枢控制芯片,经多传感器采集温度、湿度、烟雾、火焰等环境数据,通过窄带物联网(NB-IoT,Narrow Band Internet of Things)上传至OneNET云平台。经数据分析后以可视化方式呈现,对异常数据触发报警实时响应。通过手机APP实现数据实时监测及一键处置。经测试,监控系统报警准确率高于97.2%,数据延迟低于50 ms,表明该系统能够实现消防火警的无线远程监控,并做出快速反应,满足中小微企业和普通家庭用户的消防监控需要。展开更多
在高速铁路场景下,准确估计和跟踪无线电信号的波达方向(Direction of Arrival, DOA)能够有效提升无线通信服务质量.然而,高速移动的无线信道具有快速时变特性,对信号处理的速度和准确性提出了更高的挑战.针对传统的基于信号子空间的DO...在高速铁路场景下,准确估计和跟踪无线电信号的波达方向(Direction of Arrival, DOA)能够有效提升无线通信服务质量.然而,高速移动的无线信道具有快速时变特性,对信号处理的速度和准确性提出了更高的挑战.针对传统的基于信号子空间的DOA估计算法,由于巨大的计算量而无法应用于高速铁路快速时变系统中进行DOA跟踪的问题,提出了基于卡尔曼滤波和正交压缩近似投影子空间跟踪(Kalman Filter-Orthonormal Projection Approximation and Subspace Tracking of deflation, K-OPASTd)的DOA算法.首先,搭建基于云平台的铁路信号动态测向系统;然后,建立列车接收信号模型,提出K-OPASTd算法对DOA进行动态跟踪;最后,将本文提出的算法与OPASTd算法所得到的估计角度的均方根误差进行仿真对比实验.研究结果表明:信噪比均为10dB时,本文所提算法的均方根误差比OPASTd算法低约60%;阵元均为20时,K-OPASTd算法的均方根误差比OPASTd算法低约80%.展开更多
文摘针对传统消防监控系统存在开发成本高、误警率高、实时监控不便的问题,提出一种基于物联网云平台的智慧消防远程监控系统。采用STM32单片机作为中枢控制芯片,经多传感器采集温度、湿度、烟雾、火焰等环境数据,通过窄带物联网(NB-IoT,Narrow Band Internet of Things)上传至OneNET云平台。经数据分析后以可视化方式呈现,对异常数据触发报警实时响应。通过手机APP实现数据实时监测及一键处置。经测试,监控系统报警准确率高于97.2%,数据延迟低于50 ms,表明该系统能够实现消防火警的无线远程监控,并做出快速反应,满足中小微企业和普通家庭用户的消防监控需要。
文摘在高速铁路场景下,准确估计和跟踪无线电信号的波达方向(Direction of Arrival, DOA)能够有效提升无线通信服务质量.然而,高速移动的无线信道具有快速时变特性,对信号处理的速度和准确性提出了更高的挑战.针对传统的基于信号子空间的DOA估计算法,由于巨大的计算量而无法应用于高速铁路快速时变系统中进行DOA跟踪的问题,提出了基于卡尔曼滤波和正交压缩近似投影子空间跟踪(Kalman Filter-Orthonormal Projection Approximation and Subspace Tracking of deflation, K-OPASTd)的DOA算法.首先,搭建基于云平台的铁路信号动态测向系统;然后,建立列车接收信号模型,提出K-OPASTd算法对DOA进行动态跟踪;最后,将本文提出的算法与OPASTd算法所得到的估计角度的均方根误差进行仿真对比实验.研究结果表明:信噪比均为10dB时,本文所提算法的均方根误差比OPASTd算法低约60%;阵元均为20时,K-OPASTd算法的均方根误差比OPASTd算法低约80%.