期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
Substation clustering based on improved KFCM algorithm with adaptive optimal clustering number selection 被引量:1
1
作者 Yanhui Xu Yihao Gao +4 位作者 Yundan Cheng Yuhang Sun Xuesong Li Xianxian Pan Hao Yu 《Global Energy Interconnection》 EI CSCD 2023年第4期505-516,共12页
The premise and basis of load modeling are substation load composition inquiries and cluster analyses.However,the traditional kernel fuzzy C-means(KFCM)algorithm is limited by artificial clustering number selection an... The premise and basis of load modeling are substation load composition inquiries and cluster analyses.However,the traditional kernel fuzzy C-means(KFCM)algorithm is limited by artificial clustering number selection and its convergence to local optimal solutions.To overcome these limitations,an improved KFCM algorithm with adaptive optimal clustering number selection is proposed in this paper.This algorithm optimizes the KFCM algorithm by combining the powerful global search ability of genetic algorithm and the robust local search ability of simulated annealing algorithm.The improved KFCM algorithm adaptively determines the ideal number of clusters using the clustering evaluation index ratio.Compared with the traditional KFCM algorithm,the enhanced KFCM algorithm has robust clustering and comprehensive abilities,enabling the efficient convergence to the global optimal solution. 展开更多
关键词 Load substation clustering Simulated annealing genetic algorithm Kernel fuzzy c-means algorithm clustering evaluation
下载PDF
Employment Quality EvaluationModel Based on Hybrid Intelligent Algorithm
2
作者 Xianhui Gu Xiaokan Wang Shuang Liang 《Computers, Materials & Continua》 SCIE EI 2023年第1期131-139,共9页
In order to solve the defect of large error in current employment quality evaluation,an employment quality evaluation model based on grey correlation degree method and fuzzy C-means(FCM)is proposed.Firstly,it analyzes... In order to solve the defect of large error in current employment quality evaluation,an employment quality evaluation model based on grey correlation degree method and fuzzy C-means(FCM)is proposed.Firstly,it analyzes the related research work of employment quality evaluation,establishes the employment quality evaluation index system,collects the index data,and normalizes the index data;Then,the weight value of employment quality evaluation index is determined by Grey relational analysis method,and some unimportant indexes are removed;Finally,the employment quality evaluation model is established by using fuzzy cluster analysis algorithm,and compared with other employment quality evaluation models.The test results show that the employment quality evaluation accuracy of the design model exceeds 93%,the employment quality evaluation error can meet the requirements of practical application,and the employment quality evaluation effect is much better than the comparison model.The comparison test verifies the superiority of the model. 展开更多
关键词 Employment quality fuzzy c-means clustering algorithm grey correlation analysis method evaluation model index system comparative test
下载PDF
一种改进的模糊C-均值聚类算法 被引量:5
3
作者 李柏年 《计算机应用与软件》 CSCD 北大核心 2008年第6期98-99,共2页
模糊C-均值聚类是一种经典的聚类方法。针对模糊C-均值算法对初始值敏感、收敛结果易陷入局部极小的问题,通过对原始数据的预处理,将欧氏距离推广到广义欧氏距离,得到了加权模糊C-均值聚类的迭代公式,实证分析表明改进后的方法得到的分... 模糊C-均值聚类是一种经典的聚类方法。针对模糊C-均值算法对初始值敏感、收敛结果易陷入局部极小的问题,通过对原始数据的预处理,将欧氏距离推广到广义欧氏距离,得到了加权模糊C-均值聚类的迭代公式,实证分析表明改进后的方法得到的分类结果与嵌入遗传算法的分类基本一致,而且通过非参数检验证实分类效果良好。 展开更多
关键词 模糊C-均值聚类 遗传算法 非参数检验
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部