The phase transition of tungsten(W)under high pressures was investigated with molecular dynamics simulation.The structure was characterized in terms of the pair distribution function and the largest standard cluster a...The phase transition of tungsten(W)under high pressures was investigated with molecular dynamics simulation.The structure was characterized in terms of the pair distribution function and the largest standard cluster analysis(LSCA).It is found that under 40−100 GPa at a cooling rate of 0.1 K/ps a pure W melt first crystallizes into the body-centred cubic(BCC)crystal,and then transfers into the hexagonal close-packed(HCP)crystal through a series of BCC−HCP coexisting states.The dynamic factors may induce intermediate stages during the liquid−solid transition and the criss-cross grain boundaries cause lots of indistinguishable intermediate states,making the first-order BCC−HCP transition appear to be continuous.Furthermore,LSCA is shown to be a parameter-free method that can effectively analyze both ordered and disordered structures.Therefore,LSCA can detect more details about the evolution of the structure in such structure transition processes with rich intermediate structures.展开更多
The topological charge density and topological susceptibility are determined by a multi-probing approximation using overlap fermions in quenched SU(3) gauge theory. Then we investigate the topological structure of t...The topological charge density and topological susceptibility are determined by a multi-probing approximation using overlap fermions in quenched SU(3) gauge theory. Then we investigate the topological structure of the quenched QCD vacuum, and compare it with results from the all-scale topological density. The results are consistent.Random permuted topological charge density is used to check whether these structures represent underlying ordered properties. The pseudoscalar glueball mass is extracted from the two-point correlation function of the topological charge density. We study 3 ensembles of different lattice spacing a with the same lattice volume 16^3×32. The results are compatible with the results of all-scale topological charge density, and the topological structures revealed by multi-probing are much closer to all-scale topological charge density than those from eigenmode expansion.展开更多
基金Projects(51661005,U1612442)supported by the National Natural Science Foundation of ChinaProject(QKHJC[2017]1025)supported by the Natural Science Foundation of Guizhou Province,ChinaProject(2018JJ3560)supported by the Natural Science Foundation of Hunan Province,China。
文摘The phase transition of tungsten(W)under high pressures was investigated with molecular dynamics simulation.The structure was characterized in terms of the pair distribution function and the largest standard cluster analysis(LSCA).It is found that under 40−100 GPa at a cooling rate of 0.1 K/ps a pure W melt first crystallizes into the body-centred cubic(BCC)crystal,and then transfers into the hexagonal close-packed(HCP)crystal through a series of BCC−HCP coexisting states.The dynamic factors may induce intermediate stages during the liquid−solid transition and the criss-cross grain boundaries cause lots of indistinguishable intermediate states,making the first-order BCC−HCP transition appear to be continuous.Furthermore,LSCA is shown to be a parameter-free method that can effectively analyze both ordered and disordered structures.Therefore,LSCA can detect more details about the evolution of the structure in such structure transition processes with rich intermediate structures.
基金Supported by National Natural Science Foundation of China(NSFC)(11335001,11275169,11075167)supported in part by the DFG and the NSFC(11261130311) through funds provided to the Sino-German CRC 110 "Symmetries and the Emergence of Structure in QCD"funded in part by National Basic Research Program of China(973 Program)(2015CB856700)
文摘The topological charge density and topological susceptibility are determined by a multi-probing approximation using overlap fermions in quenched SU(3) gauge theory. Then we investigate the topological structure of the quenched QCD vacuum, and compare it with results from the all-scale topological density. The results are consistent.Random permuted topological charge density is used to check whether these structures represent underlying ordered properties. The pseudoscalar glueball mass is extracted from the two-point correlation function of the topological charge density. We study 3 ensembles of different lattice spacing a with the same lattice volume 16^3×32. The results are compatible with the results of all-scale topological charge density, and the topological structures revealed by multi-probing are much closer to all-scale topological charge density than those from eigenmode expansion.