A new incremental clustering method is presented, which partitions dynamic data sets by mapping data points in high dimension space into low dimension space based on (fuzzy) cross-entropy(CE). This algorithm is di...A new incremental clustering method is presented, which partitions dynamic data sets by mapping data points in high dimension space into low dimension space based on (fuzzy) cross-entropy(CE). This algorithm is divided into two parts: initial clustering process and incremental clustering process. The former calculates fuzzy cross-entropy or cross-entropy of one point relafive to others and a hierachical method based on cross-entropy is used for clustering static data sets. Moreover, it has the lower time complexity. The latter assigns new points to the suitable cluster by calculating membership of data point to existed centers based on the cross-entropy measure. Experimental compafisons show the proposed methood has lower time complexity than common methods in the large-scale data situations cr dynamic work environments.展开更多
To solve the problems of a few optical fibre line fault samples and the inefficiency of manual communication optical fibre fault diagnosis,this paper proposes a communication optical fibre fault diagnosis model based ...To solve the problems of a few optical fibre line fault samples and the inefficiency of manual communication optical fibre fault diagnosis,this paper proposes a communication optical fibre fault diagnosis model based on variational modal decomposition(VMD),fuzzy entropy(FE)and fuzzy clustering(FC).Firstly,based on the OTDR curve data collected in the field,VMD is used to extract the different modal components(IMF)of the original signal and calculate the fuzzy entropy(FE)values of different components to characterize the subtle differences between them.The fuzzy entropy of each curve is used as the feature vector,which in turn constructs the communication optical fibre feature vector matrix,and the fuzzy clustering algorithm is used to achieve fault diagnosis of faulty optical fibre.The VMD-FE combination can extract subtle differences in features,and the fuzzy clustering algorithm does not require sample training.The experimental results show that the model in this paper has high accuracy and is relevant to the maintenance of communication optical fibre when compared with existing feature extraction models and traditional machine learning models.展开更多
Wind farm power prediction is proposed based on adaptive feature weight entropy fuzzy clustering algorithm.According to the fuzzy clustering method,a large number of historical data of a wind farm in Inner Mongolia ar...Wind farm power prediction is proposed based on adaptive feature weight entropy fuzzy clustering algorithm.According to the fuzzy clustering method,a large number of historical data of a wind farm in Inner Mongolia are analyzed and classified.Model of adaptive entropy weight for clustering is built.Wind power prediction model based on adaptive entropy fuzzy clustering feature weights is built.Simulation results show that the proposed method could distinguish the abnormal data and forecast more accurately and compute fastly.展开更多
With the gradually development of economy in China, people's living stan- dards have been improved, which makes people have higher and higher require- ments on the quality of life, and thus community service has beco...With the gradually development of economy in China, people's living stan- dards have been improved, which makes people have higher and higher require- ments on the quality of life, and thus community service has become and essential part in people's life. In order to understand the basic building blocks of community service organizations in different cities in China, classification comparison was made to the data of 31 cities in China from China Statistical Year Book (2014) by using SPSS clustering method and the fuzzy clustering method, so as to find out the dif- ferences and the causes of the differences, with the aim to promote the manage- ment of relevant government and personnel.展开更多
Water quality assessment of lakes is important to determine functional zones of water use.Considering the fuzziness during the partitioning process for lake water quality in an arid area,a multiplex model of fuzzy clu...Water quality assessment of lakes is important to determine functional zones of water use.Considering the fuzziness during the partitioning process for lake water quality in an arid area,a multiplex model of fuzzy clustering with pattern recognition was developed by integrating transitive closure method,ISODATA algorithm in fuzzy clustering and fuzzy pattern recognition.The model was applied to partition the Ulansuhai Lake,a typical shallow lake in arid climate zone in the west part of Inner Mongolia,China and grade the condition of water quality divisions.The results showed that the partition well matched the real conditions of the lake,and the method has been proved accurate in the application.展开更多
An evaluation index is a prerequisite for the scientific evaluation of a public meteorological service.This paper aims to explore a technical method for determining and screening evaluation indicators.Based on public ...An evaluation index is a prerequisite for the scientific evaluation of a public meteorological service.This paper aims to explore a technical method for determining and screening evaluation indicators.Based on public satisfaction survey data obtained in Wafangdian,China in 2010,this study investigates the suitability of fuzzy clustering analysis method in establishing an evaluation index.Through quantitative analysis of multilayer fuzzy clustering of various evaluation indicators,correlation analysis indicates that if the results of clustering were identical for two evaluation indicators in the same sub-evaluation layer,then one indicator could be removed,or the two indicators merged.For evaluation indicators in different sub-evaluation layers,although clustering reveals attribute correlations,these indicators may not be substituted for one another.Analysis of the applicability of the fuzzy clustering method shows that it plays a certain role in the establishment and correction of an evaluation index.展开更多
On the process of power system black start after an accident, it can help to optimize the resources allocation and accelerate the recovery process that decomposing the power system into several independent partitions ...On the process of power system black start after an accident, it can help to optimize the resources allocation and accelerate the recovery process that decomposing the power system into several independent partitions for parallel recovery. On the basis of adequate consideration of fuzziness of black-start zone partitioning, a new algorithm based on fuzzy clustering analysis is presented. Characteristic indexes are extracted fully and accurately. The raw data matrix is made up of the electrical distance between every nodes and blackstart resources. Closure transfer method is utilized to get the dynamic clustering. The availability and feasibility of the proposed algorithm are verified on the New-England 39 bus system at last.展开更多
In recent years,multi-view clustering research has attracted considerable attention because of the rapidly growing demand for unsupervised analysis of multi-view data in practical applications.Despite the significant ...In recent years,multi-view clustering research has attracted considerable attention because of the rapidly growing demand for unsupervised analysis of multi-view data in practical applications.Despite the significant advances in multi-view clustering,two challenges still need to be addressed,i.e.,how to make full use of the consistent and complementary information in multiple views and how to discriminate the contributions of different views and features in the same view to efficiently reveal the latent cluster structure of multi-view data for clustering.In this study,we propose a novel Two-level Weighted Collaborative Multi-view Fuzzy Clustering(TW-Co-MFC)approach to address the aforementioned issues.In TW-Co-MFC,a two-level weighting strategy is devised to measure the importance of views and features,and a collaborative working mechanism is introduced to balance the within-view clustering quality and the cross-view clustering consistency.Then an iterative optimization objective function based on the maximum entropy principle is designed for multi-view clustering.Experiments on real-world datasets show the effectiveness of the proposed approach.展开更多
In this paper we propose a novel method for identifying relevant subspaces using fuzzy entropy and perform clustering. This measure discriminates the real distribution better by using membership functions for measurin...In this paper we propose a novel method for identifying relevant subspaces using fuzzy entropy and perform clustering. This measure discriminates the real distribution better by using membership functions for measuring class match degrees. Hence the fuzzy entropy reflects more information in the actual distribution of patterns in the subspaces. We use a heuristic procedure based on the silhouette criterion to find the number of clusters. The presented theories and algorithms are evaluated through experiments on a collection of benchmark data sets. Empirical results have shown its favorable performance in comparison with several other clustering algorithms.展开更多
In order to distinguish with effect different hesitant fuzzy elements(HFEs), we introduce the asymmetrical relative entropy between HFEs as a distance measure for higher discernment. Next,the formula of attribute weig...In order to distinguish with effect different hesitant fuzzy elements(HFEs), we introduce the asymmetrical relative entropy between HFEs as a distance measure for higher discernment. Next,the formula of attribute weights is derived via an optimal model according to TOPSIS from the relative closeness degree constructed by the discerning relative entropy. Then, we propose the concept of cocorrelation degree from the viewpoint of probability theory and develop another new formula of hesitant fuzzy correlation coeffcient, and prove their similar properties to the traditional correlation coeffcient.To make full use of the existing similarity measures including the ones presented by us, we consider aggregation of similarity measures for hesitant fuzzy sets and derive the synthetical similarity formula.Finally, the derived formula is used for netting clustering analysis under hesitant fuzzy information and the effectiveness and superiority are veri?ed through a comparison analysis of clustering results obtained by other clustering algorithms.展开更多
Segmenting the Dynamic Contrast-Enhanced Breast Magnetic Resonance Images(DCE-BMRI)is an extremely important task to diagnose the disease because it has the highest specificity when acquired with high temporal and spa...Segmenting the Dynamic Contrast-Enhanced Breast Magnetic Resonance Images(DCE-BMRI)is an extremely important task to diagnose the disease because it has the highest specificity when acquired with high temporal and spatial resolution and is also corrupted by heavy noise,outliers,and other imaging artifacts.In this paper,we intend to develop efficient robust segmentation algorithms based on fuzzy clustering approach for segmenting the DCE-BMRs.Our proposed segmentation algorithms have been amalgamated with effective kernel-induced distance measure on standard fuzzy c-means algorithm along with the spatial neighborhood information,entropy term,and tolerance vector into a fuzzy clustering structure for segmenting the DCE-BMRI.The significant feature of our proposed algorithms is its capability tofind the optimal membership grades and obtain effective cluster centers automatically by minimizing the proposed robust objective functions.Also,this article demonstrates the superiority of the proposed algorithms for segmenting DCE-BMRI in comparison with other recent kernel-based fuzzy c-means techniques.Finally the clustering accuracies of the proposed algorithms are validated by using silhouette method in comparison with existed fuzzy clustering algorithms.展开更多
Based on the Regional Specialized Meteorological Center(RSMC)Tokyo-Typhoon Center best-track data and the NCEP-NCAR reanalysis dataset,extratropical transitioning(ET)tropical cyclones(ETCs)over the western North Pacif...Based on the Regional Specialized Meteorological Center(RSMC)Tokyo-Typhoon Center best-track data and the NCEP-NCAR reanalysis dataset,extratropical transitioning(ET)tropical cyclones(ETCs)over the western North Pacific(WNP)during 1951–2021 are classified into six clusters using the fuzzy c-means clustering method(FCM)according to their track patterns.The characteristics of the six hard-clustered ETCs with the highest membership coefficient are shown.Most tropical cyclones(TCs)that were assigned to clusters C2,C5,and C6 made landfall over eastern Asian countries,which severely threatened these regions.Among landfalling TCs,93.2%completed their ET after landfall,whereas 39.8%of ETCs completed their transition within one day.The frequency of ETCs over the WNP has decreased in the past four decades,wherein cluster C5 demonstrated a significant decrease on both interannual and interdecadal timescales with the expansion and intensification of the western Pacific subtropical high(WPSH).This large-scale circulation pattern is favorable for C2 and causes it to become the dominant track pattern,owning to it containing the largest number of intensifying ETCs among the six clusters,a number that has increased insignificantly over the past four decades.The surface roughness variation and three-dimensional background circulation led to C5 containing the maximum number of landfalling TCs and a minimum number of intensifying ETCs.Our results will facilitate a better understanding of the spatiotemporal distributions of ET events and associated environment background fields,which will benefit the effective monitoring of these events over the WNP.展开更多
文摘A new incremental clustering method is presented, which partitions dynamic data sets by mapping data points in high dimension space into low dimension space based on (fuzzy) cross-entropy(CE). This algorithm is divided into two parts: initial clustering process and incremental clustering process. The former calculates fuzzy cross-entropy or cross-entropy of one point relafive to others and a hierachical method based on cross-entropy is used for clustering static data sets. Moreover, it has the lower time complexity. The latter assigns new points to the suitable cluster by calculating membership of data point to existed centers based on the cross-entropy measure. Experimental compafisons show the proposed methood has lower time complexity than common methods in the large-scale data situations cr dynamic work environments.
基金This paper is supported by State Grid Gansu Electric Power Company Science and Technology Project(20220515003).
文摘To solve the problems of a few optical fibre line fault samples and the inefficiency of manual communication optical fibre fault diagnosis,this paper proposes a communication optical fibre fault diagnosis model based on variational modal decomposition(VMD),fuzzy entropy(FE)and fuzzy clustering(FC).Firstly,based on the OTDR curve data collected in the field,VMD is used to extract the different modal components(IMF)of the original signal and calculate the fuzzy entropy(FE)values of different components to characterize the subtle differences between them.The fuzzy entropy of each curve is used as the feature vector,which in turn constructs the communication optical fibre feature vector matrix,and the fuzzy clustering algorithm is used to achieve fault diagnosis of faulty optical fibre.The VMD-FE combination can extract subtle differences in features,and the fuzzy clustering algorithm does not require sample training.The experimental results show that the model in this paper has high accuracy and is relevant to the maintenance of communication optical fibre when compared with existing feature extraction models and traditional machine learning models.
基金supported by the Natural Science Foundation of China under contact(61233007)
文摘Wind farm power prediction is proposed based on adaptive feature weight entropy fuzzy clustering algorithm.According to the fuzzy clustering method,a large number of historical data of a wind farm in Inner Mongolia are analyzed and classified.Model of adaptive entropy weight for clustering is built.Wind power prediction model based on adaptive entropy fuzzy clustering feature weights is built.Simulation results show that the proposed method could distinguish the abnormal data and forecast more accurately and compute fastly.
文摘With the gradually development of economy in China, people's living stan- dards have been improved, which makes people have higher and higher require- ments on the quality of life, and thus community service has become and essential part in people's life. In order to understand the basic building blocks of community service organizations in different cities in China, classification comparison was made to the data of 31 cities in China from China Statistical Year Book (2014) by using SPSS clustering method and the fuzzy clustering method, so as to find out the dif- ferences and the causes of the differences, with the aim to promote the manage- ment of relevant government and personnel.
基金Supported by the National Natural Science Foundation of China (No.50269001, 50569002, 50669004)Natural Science Foundation of Inner Mongolia (No.200208020512, 200711020604)The Key Scientific and Technologic Project of the 10th Five-Year Plan of Inner Mongolia (No.20010103)
文摘Water quality assessment of lakes is important to determine functional zones of water use.Considering the fuzziness during the partitioning process for lake water quality in an arid area,a multiplex model of fuzzy clustering with pattern recognition was developed by integrating transitive closure method,ISODATA algorithm in fuzzy clustering and fuzzy pattern recognition.The model was applied to partition the Ulansuhai Lake,a typical shallow lake in arid climate zone in the west part of Inner Mongolia,China and grade the condition of water quality divisions.The results showed that the partition well matched the real conditions of the lake,and the method has been proved accurate in the application.
基金National Science Foundation of China(91637105,41775048 and 41475041)National Key R&D Program of China(2018YFC1507800)Research on Tourism Traffic Meteorological Service Products in Heilongjiang Province(HQZD2017004)
文摘An evaluation index is a prerequisite for the scientific evaluation of a public meteorological service.This paper aims to explore a technical method for determining and screening evaluation indicators.Based on public satisfaction survey data obtained in Wafangdian,China in 2010,this study investigates the suitability of fuzzy clustering analysis method in establishing an evaluation index.Through quantitative analysis of multilayer fuzzy clustering of various evaluation indicators,correlation analysis indicates that if the results of clustering were identical for two evaluation indicators in the same sub-evaluation layer,then one indicator could be removed,or the two indicators merged.For evaluation indicators in different sub-evaluation layers,although clustering reveals attribute correlations,these indicators may not be substituted for one another.Analysis of the applicability of the fuzzy clustering method shows that it plays a certain role in the establishment and correction of an evaluation index.
文摘On the process of power system black start after an accident, it can help to optimize the resources allocation and accelerate the recovery process that decomposing the power system into several independent partitions for parallel recovery. On the basis of adequate consideration of fuzziness of black-start zone partitioning, a new algorithm based on fuzzy clustering analysis is presented. Characteristic indexes are extracted fully and accurately. The raw data matrix is made up of the electrical distance between every nodes and blackstart resources. Closure transfer method is utilized to get the dynamic clustering. The availability and feasibility of the proposed algorithm are verified on the New-England 39 bus system at last.
基金supported by the National Natural Science Foundation of China(Nos.61603313,61772435,61976182,and 61876157)。
文摘In recent years,multi-view clustering research has attracted considerable attention because of the rapidly growing demand for unsupervised analysis of multi-view data in practical applications.Despite the significant advances in multi-view clustering,two challenges still need to be addressed,i.e.,how to make full use of the consistent and complementary information in multiple views and how to discriminate the contributions of different views and features in the same view to efficiently reveal the latent cluster structure of multi-view data for clustering.In this study,we propose a novel Two-level Weighted Collaborative Multi-view Fuzzy Clustering(TW-Co-MFC)approach to address the aforementioned issues.In TW-Co-MFC,a two-level weighting strategy is devised to measure the importance of views and features,and a collaborative working mechanism is introduced to balance the within-view clustering quality and the cross-view clustering consistency.Then an iterative optimization objective function based on the maximum entropy principle is designed for multi-view clustering.Experiments on real-world datasets show the effectiveness of the proposed approach.
文摘In this paper we propose a novel method for identifying relevant subspaces using fuzzy entropy and perform clustering. This measure discriminates the real distribution better by using membership functions for measuring class match degrees. Hence the fuzzy entropy reflects more information in the actual distribution of patterns in the subspaces. We use a heuristic procedure based on the silhouette criterion to find the number of clusters. The presented theories and algorithms are evaluated through experiments on a collection of benchmark data sets. Empirical results have shown its favorable performance in comparison with several other clustering algorithms.
文摘In order to distinguish with effect different hesitant fuzzy elements(HFEs), we introduce the asymmetrical relative entropy between HFEs as a distance measure for higher discernment. Next,the formula of attribute weights is derived via an optimal model according to TOPSIS from the relative closeness degree constructed by the discerning relative entropy. Then, we propose the concept of cocorrelation degree from the viewpoint of probability theory and develop another new formula of hesitant fuzzy correlation coeffcient, and prove their similar properties to the traditional correlation coeffcient.To make full use of the existing similarity measures including the ones presented by us, we consider aggregation of similarity measures for hesitant fuzzy sets and derive the synthetical similarity formula.Finally, the derived formula is used for netting clustering analysis under hesitant fuzzy information and the effectiveness and superiority are veri?ed through a comparison analysis of clustering results obtained by other clustering algorithms.
基金This work was supported by DG CSIR(Ref.No.:39-35/2010(SR)),India.
文摘Segmenting the Dynamic Contrast-Enhanced Breast Magnetic Resonance Images(DCE-BMRI)is an extremely important task to diagnose the disease because it has the highest specificity when acquired with high temporal and spatial resolution and is also corrupted by heavy noise,outliers,and other imaging artifacts.In this paper,we intend to develop efficient robust segmentation algorithms based on fuzzy clustering approach for segmenting the DCE-BMRs.Our proposed segmentation algorithms have been amalgamated with effective kernel-induced distance measure on standard fuzzy c-means algorithm along with the spatial neighborhood information,entropy term,and tolerance vector into a fuzzy clustering structure for segmenting the DCE-BMRI.The significant feature of our proposed algorithms is its capability tofind the optimal membership grades and obtain effective cluster centers automatically by minimizing the proposed robust objective functions.Also,this article demonstrates the superiority of the proposed algorithms for segmenting DCE-BMRI in comparison with other recent kernel-based fuzzy c-means techniques.Finally the clustering accuracies of the proposed algorithms are validated by using silhouette method in comparison with existed fuzzy clustering algorithms.
基金supported by the National Natural Science Foundation of China(Grant Nos.42075053 and 41975128)。
文摘Based on the Regional Specialized Meteorological Center(RSMC)Tokyo-Typhoon Center best-track data and the NCEP-NCAR reanalysis dataset,extratropical transitioning(ET)tropical cyclones(ETCs)over the western North Pacific(WNP)during 1951–2021 are classified into six clusters using the fuzzy c-means clustering method(FCM)according to their track patterns.The characteristics of the six hard-clustered ETCs with the highest membership coefficient are shown.Most tropical cyclones(TCs)that were assigned to clusters C2,C5,and C6 made landfall over eastern Asian countries,which severely threatened these regions.Among landfalling TCs,93.2%completed their ET after landfall,whereas 39.8%of ETCs completed their transition within one day.The frequency of ETCs over the WNP has decreased in the past four decades,wherein cluster C5 demonstrated a significant decrease on both interannual and interdecadal timescales with the expansion and intensification of the western Pacific subtropical high(WPSH).This large-scale circulation pattern is favorable for C2 and causes it to become the dominant track pattern,owning to it containing the largest number of intensifying ETCs among the six clusters,a number that has increased insignificantly over the past four decades.The surface roughness variation and three-dimensional background circulation led to C5 containing the maximum number of landfalling TCs and a minimum number of intensifying ETCs.Our results will facilitate a better understanding of the spatiotemporal distributions of ET events and associated environment background fields,which will benefit the effective monitoring of these events over the WNP.