Nanometer micro-porous Nix Zn (1-x )Fe2O4power was synthesized by hydrotherm al method.This is first time to apply template to the synthesis.The structure,characteristics and cry stal appearance are studied further by...Nanometer micro-porous Nix Zn (1-x )Fe2O4power was synthesized by hydrotherm al method.This is first time to apply template to the synthesis.The structure,characteristics and cry stal appearance are studied further by XRD,DSC,TEM,etc.It is found that nanome ter micro-porous crystal is well-crystallized,well-degree of dispers ion and smaller than 100nm in diameter.More over,tri-ethylamine can be used to b e a ideal template in this synthesis,and the first time it is reported in our co untry.The synthesis mechanism is also preliminary discussed in this pap er.展开更多
SMnxZn1-xFe2O4 (x=1,0.9,0.8,0.7,0.6,0.5,0.25,0) nanoparticles were prepared by ball-milling hydrothermal and investigated by X-ray diffraction, DTG and TEM. Nanocrystallite grain size was determined by X-ray linewid...SMnxZn1-xFe2O4 (x=1,0.9,0.8,0.7,0.6,0.5,0.25,0) nanoparticles were prepared by ball-milling hydrothermal and investigated by X-ray diffraction, DTG and TEM. Nanocrystallite grain size was determined by X-ray linewidth to be from 63 A to 274 A. The thermal properties indicate absorbed water still remain at low temperature, crystalline wate will be decomposed from 230 ℃ to 260 ℃, partial Mn^2+ will be oxidized near 730 ℃. TEM shows the ferrite particles pocess a spherical morphology and uniform nanosize.展开更多
Aerogel Pd/(Ce0.33Zr0.66O2)SiO2 catalysts (CeZry) were prepared with variable Ce and Zr loadings (molar ratio Ce/Zr = 1/2) by combining sol-gel and impregnation methods. First, N2-physisorption was used to investigate...Aerogel Pd/(Ce0.33Zr0.66O2)SiO2 catalysts (CeZry) were prepared with variable Ce and Zr loadings (molar ratio Ce/Zr = 1/2) by combining sol-gel and impregnation methods. First, N2-physisorption was used to investigate the texture evolution. Then, H2-chimisorption and TEM were performed to study the effect on particle dispersion. After, TPR was used to determine the catalyst reducibility. Furthermore, XPS characterization was done to identify the palladium oxidation state and to evaluate the Pd-support interaction. Finally, the prepared catalysts were tested in methane combustion to assess their catalytic activity. The obtained results showed that, when the Zr and Ce loadings are varied between 0% and 8% and between 0% and 6% respectively, the BET surface area was increased from 615 to 744 m2/g, the porosity diameter from 45.7 to 83.6 Å, the Pd particle diameter from 5.2 to 7.0 nm, the CeO2 and ZrO2 particle size from 0 to 68 nm, the reduction temperature shift reached 16°C, the Pd binding energy shift attained 0.6 eV, but an optimum amounts of Zr (4 wt.%) and Ce (3 wt.%) are needed to maximize the PdO reducibility and to enhance the catalytic activity. In effect, 100% conversion of methane was reached at around 415°C on the CeZr4 catalyst.展开更多
文摘Nanometer micro-porous Nix Zn (1-x )Fe2O4power was synthesized by hydrotherm al method.This is first time to apply template to the synthesis.The structure,characteristics and cry stal appearance are studied further by XRD,DSC,TEM,etc.It is found that nanome ter micro-porous crystal is well-crystallized,well-degree of dispers ion and smaller than 100nm in diameter.More over,tri-ethylamine can be used to b e a ideal template in this synthesis,and the first time it is reported in our co untry.The synthesis mechanism is also preliminary discussed in this pap er.
基金Postdoctoral Science Foundation of China(2012M520605)Research Foundation of Taiyuan University of Technology(tyut-rc201369a,2013Z040)+1 种基金Open Foundation of State Key Laboratory of Coal Conversion(09-102)Natural Science Foundation of Shanxi Province(2013011042-1)
基金Basic Research for Application of Sichuan Province(No.05JY029-071-2)
文摘SMnxZn1-xFe2O4 (x=1,0.9,0.8,0.7,0.6,0.5,0.25,0) nanoparticles were prepared by ball-milling hydrothermal and investigated by X-ray diffraction, DTG and TEM. Nanocrystallite grain size was determined by X-ray linewidth to be from 63 A to 274 A. The thermal properties indicate absorbed water still remain at low temperature, crystalline wate will be decomposed from 230 ℃ to 260 ℃, partial Mn^2+ will be oxidized near 730 ℃. TEM shows the ferrite particles pocess a spherical morphology and uniform nanosize.
文摘Aerogel Pd/(Ce0.33Zr0.66O2)SiO2 catalysts (CeZry) were prepared with variable Ce and Zr loadings (molar ratio Ce/Zr = 1/2) by combining sol-gel and impregnation methods. First, N2-physisorption was used to investigate the texture evolution. Then, H2-chimisorption and TEM were performed to study the effect on particle dispersion. After, TPR was used to determine the catalyst reducibility. Furthermore, XPS characterization was done to identify the palladium oxidation state and to evaluate the Pd-support interaction. Finally, the prepared catalysts were tested in methane combustion to assess their catalytic activity. The obtained results showed that, when the Zr and Ce loadings are varied between 0% and 8% and between 0% and 6% respectively, the BET surface area was increased from 615 to 744 m2/g, the porosity diameter from 45.7 to 83.6 Å, the Pd particle diameter from 5.2 to 7.0 nm, the CeO2 and ZrO2 particle size from 0 to 68 nm, the reduction temperature shift reached 16°C, the Pd binding energy shift attained 0.6 eV, but an optimum amounts of Zr (4 wt.%) and Ce (3 wt.%) are needed to maximize the PdO reducibility and to enhance the catalytic activity. In effect, 100% conversion of methane was reached at around 415°C on the CeZr4 catalyst.