New reagents for immunofluorescence analysis of carbazole series containing fluorinated β-dicarbonyl fragments and carboxylic substituent groups separated by spacers of different lengths from the light-gathering carb...New reagents for immunofluorescence analysis of carbazole series containing fluorinated β-dicarbonyl fragments and carboxylic substituent groups separated by spacers of different lengths from the light-gathering carbazole scaffold have been developed. The markers in complex with Eu<sup>3+</sup> ions possess stability in the aqueous phase, intense and prolonged luminescence (τ 550 - 570 μs) with characteristic emission maxima in the region of 615 nm and excitation wavelengths in the region of 380 - 390 nm, which distinguishes them from most of the analogs used. In the study of marker conjugation with streptavidin, a reagent containing 4 - 5 europium labeling complexes based on spacer-containing carbazole tetraketone was obtained. The marker-doped silicate nanoparticles exhibit intense and long-lived luminescence in the characteristic region.展开更多
This work deals with the synthesis and physicochemical characterizations of a new group of novel retinoidal ligands and their metal complexes. Their in vitro anti-proliferative activities have shown that ligand L1 is ...This work deals with the synthesis and physicochemical characterizations of a new group of novel retinoidal ligands and their metal complexes. Their in vitro anti-proliferative activities have shown that ligand L1 is effective against human breast cancer BT-20 and MCF-7 cell lines. At the same time, compound L2 exerts its effect on human prostate cancer PC-3 and human breast cancer MDA-MB-231 and MCF-7 cell lines respectively. The retinoid ligands exert their pleiotropic action toward retinoic acid receptors (RARs) than their metal complexes but all compounds exhibit concentration-dependent.展开更多
This study presents the synthesis of three dinuclear cobalt complexes based on three imine derivatives:bis-[4-(2-pyridylmethyleneamino)-phenyl]thioether(L1),bis-[4-(2-pyridylmethyleneamino)-phenyl]ether(L2),and bis-[4...This study presents the synthesis of three dinuclear cobalt complexes based on three imine derivatives:bis-[4-(2-pyridylmethyleneamino)-phenyl]thioether(L1),bis-[4-(2-pyridylmethyleneamino)-phenyl]ether(L2),and bis-[4-(2-pyridylmethyleneamino)-phenyl]methane(L3).Single-crystal X-ray diffraction analysis reveals that the complexes[Co_(2)(L1)3](ClO_(4))4·2CH_(3)CN(1),[Co_(2)(L2)3](ClO_(4))4·2CH_(3)OH(2),and[Co_(2)(L3)3](ClO_(4))4·2CH_(3)OH(3)all exhibit a dinuclear structure.Magnetic test results show that complex 3 exhibited irreversible SCO behavior induced by loss of solvent at 300 K,with the average Co-N bond length increasing from 0.2139(3)to 0.2153(3)nm.Meanwhile,the desolvated complex 3 exhibited paramagnetic behavior similar to that of complexes 1 and 2.Variable-temperature UV-Vis spectroscopic studies also indicate that complex 3 undergoes a solvent-loss-induced spin-state transition.CCDC:2347354,1(120 K);2347355,2(120 K);2347356,3(120 K);2347357,3(400 K).展开更多
The transition metal complexes of triaminoguanidine(TAG-M,where M=Cobalt(Co)or Iron(Fe))have been prepared.The catalytic effect of these complexes on the thermolysis of energetic composite based on nitrocellulose and ...The transition metal complexes of triaminoguanidine(TAG-M,where M=Cobalt(Co)or Iron(Fe))have been prepared.The catalytic effect of these complexes on the thermolysis of energetic composite based on nitrocellulose and diethylene glycol dinitrate,has been investigated.Extensive characterization of the resulting energetic composites was carried out using scanning electron microscopy(SEM),X-ray diffraction(XRD),Fourier transform infrared spectroscopy(FTIR),and differential scanning calorimetry(DSC).Isoconversional kinetic analysis was performed to determine the Arrhenius parameters associated with the thermolysis of the elaborated energetic formulations.It is found that TAG-M complexes have strong catalytic effect on the thermo-kinetic decomposition of NC/DEGDN by decreasing the apparent activation energy and significantly increased the total heat release.The models that govern the decomposition processes are also studied,and it is revealed that different reaction processes are accomplished by introduction metal complexes of triaminoguanidine.Overall,this study serves as a valuable reference for future research focused on the investigation of catalytic combustion features of solid propellants.展开更多
Reconstituting membrane proteins in liposomes and determining their structure is a common method for determining membrane protein structures using single-particle cryo-electron microscopy(cryo-EM).However,the strong s...Reconstituting membrane proteins in liposomes and determining their structure is a common method for determining membrane protein structures using single-particle cryo-electron microscopy(cryo-EM).However,the strong signal of liposomes under cryo-EM imaging conditions often interferes with the structural determination of the embedded membrane proteins.Here,we propose a liposome signal subtraction method based on single-particle two-dimensional(2D)classification average images,aimed at enhancing the reconstruction resolution of membrane proteins.We analyzed the signal distribution characteristics of liposomes and proteins within the 2D classification average images of protein–liposome complexes in the frequency domain.Based on this analysis,we designed a method to subtract the liposome signals from the original particle images.After the subtraction,the accuracy of single-particle three-dimensional(3D)alignment was improved,enhancing the resolution of the final 3D reconstruction.We demonstrated this method using a PIEZO1-proteoliposome dataset by improving the resolution of the PIEZO1 protein.展开更多
Mercury ion(Hg^(2+)),a highly noxious of heavy metalion,has detrimental effects on the ecological environment and human health.Herein,we have developed an exonuclease III(Exo III)assisted catalytic hairpin assembly fo...Mercury ion(Hg^(2+)),a highly noxious of heavy metalion,has detrimental effects on the ecological environment and human health.Herein,we have developed an exonuclease III(Exo III)assisted catalytic hairpin assembly formation of a trivalent G-quadruplex/hemin DNAzyme for colorimetric detection of Hg^(2+).A hairpin DNA(Hr)was designed with thymine-Hg^(2+)-thymine pairs that catalyzed by Exo III is prompted to happen upon binding Hg^(2+).A released DNA fragment triggers the catalytic assembly of other three hairpins(H1,H2,and H3)to form many trivalent G-quadruplex/hemin DNA enzymes for signal output.The developed sensor shows a dynamic range from 2 pM to 2μM,with an impressively low detection limit of 0.32 pM for Hg^(2+)detection.Such a sensor also has good selectivity toward Hg^(2+)detection in the presence of other common metal ions.This strategy shows the great potential for visual detection with portable type.展开更多
Co(II) and Cr(III) metal complexes of Schiff bases were synthesized from the condensation reaction between 4-(dimethylamino)benzaldehyde and 4-amino-3-hydroxy-naphthalene-1-sulfonic acid. Their structures were investi...Co(II) and Cr(III) metal complexes of Schiff bases were synthesized from the condensation reaction between 4-(dimethylamino)benzaldehyde and 4-amino-3-hydroxy-naphthalene-1-sulfonic acid. Their structures were investigated by elemental analysis, molar conductance measurements, infrared spectroscopy, electronic spectroscopy, and 1HNMR spectroscopy. The elemental analysis data suggested a 1:1 [M:L] ratio for the complexes. The molar conductance measurements of the complexes indicate their electrolytic nature in DMSO as a solvent. The absorption bands in the electronic spectra verified an octahedral environment around the metal ions in the complexes.展开更多
CRISPR/Cas9 genome editing technology can overcome many limitations of traditional breeding,offering enormous potential for crop improvement and food production.Although the direct delivery of Cas9-single guide RNA(sg...CRISPR/Cas9 genome editing technology can overcome many limitations of traditional breeding,offering enormous potential for crop improvement and food production.Although the direct delivery of Cas9-single guide RNA(sgRNA)ribonucleoprotein(RNP)complexes to grapevine(Vitis vinifera)protoplasts has been shown before,the regeneration of edited protoplasts into whole plants has not been reported.Here,we describe an efficient approach to obtain transgene-free edited grapevine plants by the transfection and subsequent regeneration of protoplasts isolated from embryogenic callus.As proof of concept,a single-copy green f luorescent protein reporter gene(GFP)in the grapevine cultivar Thompson Seedless was targeted and knocked out by the direct delivery of RNPs to protoplasts.CRISPR/Cas9 activity,guided by two independent sgRNAs,was confirmed by the loss of GFP f luorescence.The regeneration of GFP−protoplasts into whole plants was monitored throughout development,confirming that the edited grapevine plants were comparable in morphology and growth habit to wild-type controls.We report the first highly efficient protocol for DNA-free genome editing in grapevine by the direct delivery of preassembled Cas9-sgRNA RNP complexes into protoplasts,helping to address the regulatory concerns related to genetically modified plants.This technology could encourage the application of genome editing for the genetic improvement of grapevine and other woody crop plants.展开更多
For the further improvement of the power conversion efficiency(PCE)and stability of perovskite solar cells(PSCs),the buried interface between the perovskite and the electron transport layer is crucial.However,it is ch...For the further improvement of the power conversion efficiency(PCE)and stability of perovskite solar cells(PSCs),the buried interface between the perovskite and the electron transport layer is crucial.However,it is challenging to effectively optimize this interface as it is buried beneath the perovskite film.Herein,we have designed and synthesized a series of multifunctional organic-inorganic(OI)complexes as buried interfacial material to promote electron extraction,as well as the crystal growth of the perovskite.The OI complex with BF4−group not only eliminates oxygen vacancies on the SnO_(2) surface but also balances energy level alignment between SnO_(2) and perovskite,providing a favorable environment for charge carrier extraction.Moreover,OI complex with amine(−NH_(2))functional group can regulate the crystallization of the perovskite film via interaction with PbI2,resulting in highly crystallized perovskite film with large grains and low defect density.Consequently,with rational molecular design,the PSCs with optimal OI complex buried interface layer which contains both BF4−and−NH_(2) functional groups yield a champion device efficiency of 23.69%.More importantly,the resulting unencapsulated device performs excellent ambient stability,maintaining over 90%of its initial efficiency after 2000 h storage,and excellent light stability of 91.5%remaining PCE in the maximum power point tracking measurement(under continuous 100 mW cm−2 light illumination in N2 atmosphere)after 500 h.展开更多
The preparation process of the Cr(III) bath was studied based on a perspective of accelerating the formation of active Cr(III) complexes. The results of ultraviolet-visible absorption spectroscopy (UV-Vis) and e...The preparation process of the Cr(III) bath was studied based on a perspective of accelerating the formation of active Cr(III) complexes. The results of ultraviolet-visible absorption spectroscopy (UV-Vis) and electrodeposition showed that active Cr(III) complexes in the bath prepared at room temperature in several days were rare for depositing chromium. The increase of heating temperature, time, and pH value during the bath preparation promoted the formation of active Cr(III) complexes. The chromium deposition rate increased with the concentration of active Cr(III) complexes increasing. Increasing the heating temperature from 60 to 96℃, the chromium deposition rate increased from 0.40 to 0.71μm/min. When the concentration of active Cr(III) complexes increased, the grain size of Cr coatings increased, and the carbon content of the coating decreased. It is deduced that Cr(H20)4(OH)L2+ (L is an organic ligand, and its valence is omitted) is a primary active Cr(III) complex.展开更多
The aerospace community widely uses difficult-to-cut materials,such as titanium alloys,high-temperature alloys,metal/ceramic/polymer matrix composites,hard and brittle materials,and geometrically complex components,su...The aerospace community widely uses difficult-to-cut materials,such as titanium alloys,high-temperature alloys,metal/ceramic/polymer matrix composites,hard and brittle materials,and geometrically complex components,such as thin-walled structures,microchannels,and complex surfaces.Mechanical machining is the main material removal process for the vast majority of aerospace components.However,many problems exist,including severe and rapid tool wear,low machining efficiency,and poor surface integrity.Nontraditional energy-assisted mechanical machining is a hybrid process that uses nontraditional energies(vibration,laser,electricity,etc)to improve the machinability of local materials and decrease the burden of mechanical machining.This provides a feasible and promising method to improve the material removal rate and surface quality,reduce process forces,and prolong tool life.However,systematic reviews of this technology are lacking with respect to the current research status and development direction.This paper reviews the recent progress in the nontraditional energy-assisted mechanical machining of difficult-to-cut materials and components in the aerospace community.In addition,this paper focuses on the processing principles,material responses under nontraditional energy,resultant forces and temperatures,material removal mechanisms,and applications of these processes,including vibration-,laser-,electric-,magnetic-,chemical-,advanced coolant-,and hybrid nontraditional energy-assisted mechanical machining.Finally,a comprehensive summary of the principles,advantages,and limitations of each hybrid process is provided,and future perspectives on forward design,device development,and sustainability of nontraditional energy-assisted mechanical machining processes are discussed.展开更多
Three novel β-diketones (HPPP, HTPP, and HFPP) ligands were synthesized by Sonogashira coupling reaction and Claisen condensation. The structure of β-diketones was confirmed with elemental analysis, IR, NMR and MS...Three novel β-diketones (HPPP, HTPP, and HFPP) ligands were synthesized by Sonogashira coupling reaction and Claisen condensation. The structure of β-diketones was confirmed with elemental analysis, IR, NMR and MS spectra. Three new ternary complexes consisting of Eu(Ⅲ), β-diketones, and 1,10-phenanthroline(phen) were synthesized and characterized as TbL3phen (L=PPP, TPP, FPP) with elemental analysis, chemical analysis, and IR spectra, and their luminescence properties were studied.展开更多
Ru(II)polypyridine complexes have attracted much attention as anticancer agents because of their unique photophysical,photochemical,and biological properties.Despite their promising therapeutic profile,the vast majori...Ru(II)polypyridine complexes have attracted much attention as anticancer agents because of their unique photophysical,photochemical,and biological properties.Despite their promising therapeutic profile,the vast majority of compounds are associated with poor water solubility and poor cancer selectivity.Among the different strategies employed to overcome these pharmacological limitations,many research efforts have been devoted to the physical or covalent encapsulation of the Ru(II)polypyridine complexes into nanoparticles.This article highlights recent developments in the design,preparation,and physicochemical properties of Ru(II)polypyridine complex-loaded nanoparticles for their potential application in anticancer therapy.展开更多
The novel Fe-N co-doped ordered mesoporous carbon with high catalytic activity in m-cresol removal was prepared by urea-assisted impregnation and simple pyrolysis method.During the preparation of the Fe-NC catalyst,th...The novel Fe-N co-doped ordered mesoporous carbon with high catalytic activity in m-cresol removal was prepared by urea-assisted impregnation and simple pyrolysis method.During the preparation of the Fe-NC catalyst,the complexation of N elements in urea could anchor Fe,and the formation of C3N4during urea pyrolysis could also prevent migration and aggregation of Fe species,which jointly improve the dispersion and stability of Fe.The FeN4sites and highly dispersed Fe nanoparticles synergistically trigger the dual-site peroxymonosulfate (PMS) activation for highly efficient m-cresol degradation,while the ordered mesoporous structure of the catalyst could improve the mass transfer rate of the catalytic process,which together promote catalytic degradation of m-cresol by PMS activation.Reactive oxygen species (ROS) analytic experiments demonstrate that the system degrades m-cresol by free radical pathway mainly based on SO_(4)^(-)·and·OH,and partially based on·OH as the active components,and a possible PMS activation mechanism by 5Fe-50 for m-cresol degradation was proposed.This study can provide theoretical guidance for the preparation of efficient and stable catalysts for the degradation of organic pollutants by activated PMS.展开更多
文摘New reagents for immunofluorescence analysis of carbazole series containing fluorinated β-dicarbonyl fragments and carboxylic substituent groups separated by spacers of different lengths from the light-gathering carbazole scaffold have been developed. The markers in complex with Eu<sup>3+</sup> ions possess stability in the aqueous phase, intense and prolonged luminescence (τ 550 - 570 μs) with characteristic emission maxima in the region of 615 nm and excitation wavelengths in the region of 380 - 390 nm, which distinguishes them from most of the analogs used. In the study of marker conjugation with streptavidin, a reagent containing 4 - 5 europium labeling complexes based on spacer-containing carbazole tetraketone was obtained. The marker-doped silicate nanoparticles exhibit intense and long-lived luminescence in the characteristic region.
文摘This work deals with the synthesis and physicochemical characterizations of a new group of novel retinoidal ligands and their metal complexes. Their in vitro anti-proliferative activities have shown that ligand L1 is effective against human breast cancer BT-20 and MCF-7 cell lines. At the same time, compound L2 exerts its effect on human prostate cancer PC-3 and human breast cancer MDA-MB-231 and MCF-7 cell lines respectively. The retinoid ligands exert their pleiotropic action toward retinoic acid receptors (RARs) than their metal complexes but all compounds exhibit concentration-dependent.
文摘This study presents the synthesis of three dinuclear cobalt complexes based on three imine derivatives:bis-[4-(2-pyridylmethyleneamino)-phenyl]thioether(L1),bis-[4-(2-pyridylmethyleneamino)-phenyl]ether(L2),and bis-[4-(2-pyridylmethyleneamino)-phenyl]methane(L3).Single-crystal X-ray diffraction analysis reveals that the complexes[Co_(2)(L1)3](ClO_(4))4·2CH_(3)CN(1),[Co_(2)(L2)3](ClO_(4))4·2CH_(3)OH(2),and[Co_(2)(L3)3](ClO_(4))4·2CH_(3)OH(3)all exhibit a dinuclear structure.Magnetic test results show that complex 3 exhibited irreversible SCO behavior induced by loss of solvent at 300 K,with the average Co-N bond length increasing from 0.2139(3)to 0.2153(3)nm.Meanwhile,the desolvated complex 3 exhibited paramagnetic behavior similar to that of complexes 1 and 2.Variable-temperature UV-Vis spectroscopic studies also indicate that complex 3 undergoes a solvent-loss-induced spin-state transition.CCDC:2347354,1(120 K);2347355,2(120 K);2347356,3(120 K);2347357,3(400 K).
文摘The transition metal complexes of triaminoguanidine(TAG-M,where M=Cobalt(Co)or Iron(Fe))have been prepared.The catalytic effect of these complexes on the thermolysis of energetic composite based on nitrocellulose and diethylene glycol dinitrate,has been investigated.Extensive characterization of the resulting energetic composites was carried out using scanning electron microscopy(SEM),X-ray diffraction(XRD),Fourier transform infrared spectroscopy(FTIR),and differential scanning calorimetry(DSC).Isoconversional kinetic analysis was performed to determine the Arrhenius parameters associated with the thermolysis of the elaborated energetic formulations.It is found that TAG-M complexes have strong catalytic effect on the thermo-kinetic decomposition of NC/DEGDN by decreasing the apparent activation energy and significantly increased the total heat release.The models that govern the decomposition processes are also studied,and it is revealed that different reaction processes are accomplished by introduction metal complexes of triaminoguanidine.Overall,this study serves as a valuable reference for future research focused on the investigation of catalytic combustion features of solid propellants.
基金Project supported by the National Natural Science Foundation of China (Grant Nos.32241023 and 92254306)the Fund from the Tsinghua–Peking Joint Center for Life SciencesBeijing Frontier Research Center for Biological Structure。
文摘Reconstituting membrane proteins in liposomes and determining their structure is a common method for determining membrane protein structures using single-particle cryo-electron microscopy(cryo-EM).However,the strong signal of liposomes under cryo-EM imaging conditions often interferes with the structural determination of the embedded membrane proteins.Here,we propose a liposome signal subtraction method based on single-particle two-dimensional(2D)classification average images,aimed at enhancing the reconstruction resolution of membrane proteins.We analyzed the signal distribution characteristics of liposomes and proteins within the 2D classification average images of protein–liposome complexes in the frequency domain.Based on this analysis,we designed a method to subtract the liposome signals from the original particle images.After the subtraction,the accuracy of single-particle three-dimensional(3D)alignment was improved,enhancing the resolution of the final 3D reconstruction.We demonstrated this method using a PIEZO1-proteoliposome dataset by improving the resolution of the PIEZO1 protein.
基金Supported by The Science and Technology Project of General Administration of Quality Supervision,Inspection and Quarantine (2015IK126)The Science and Technology Project of Changsha City of Hunan Province of China (KQ1602124).
文摘Mercury ion(Hg^(2+)),a highly noxious of heavy metalion,has detrimental effects on the ecological environment and human health.Herein,we have developed an exonuclease III(Exo III)assisted catalytic hairpin assembly formation of a trivalent G-quadruplex/hemin DNAzyme for colorimetric detection of Hg^(2+).A hairpin DNA(Hr)was designed with thymine-Hg^(2+)-thymine pairs that catalyzed by Exo III is prompted to happen upon binding Hg^(2+).A released DNA fragment triggers the catalytic assembly of other three hairpins(H1,H2,and H3)to form many trivalent G-quadruplex/hemin DNA enzymes for signal output.The developed sensor shows a dynamic range from 2 pM to 2μM,with an impressively low detection limit of 0.32 pM for Hg^(2+)detection.Such a sensor also has good selectivity toward Hg^(2+)detection in the presence of other common metal ions.This strategy shows the great potential for visual detection with portable type.
文摘Co(II) and Cr(III) metal complexes of Schiff bases were synthesized from the condensation reaction between 4-(dimethylamino)benzaldehyde and 4-amino-3-hydroxy-naphthalene-1-sulfonic acid. Their structures were investigated by elemental analysis, molar conductance measurements, infrared spectroscopy, electronic spectroscopy, and 1HNMR spectroscopy. The elemental analysis data suggested a 1:1 [M:L] ratio for the complexes. The molar conductance measurements of the complexes indicate their electrolytic nature in DMSO as a solvent. The absorption bands in the electronic spectra verified an octahedral environment around the metal ions in the complexes.
基金This research was funded by the European Union’s Horizon 2020 research and innovation programme under Marie Skłodowska-Curie grant no.754345 awarded to SN,the University of Verona in the framework of the Grant Ricerca di Base“Definition of master regulator genes of fruit ripening in grapevine”awarded to SZ,and the Ministero delle Politiche Agricole Alimentari e Forestali(Mipaaf)in the framework of the BIOTECH-VITECH(CIG:8704614AB4)project awarded to SZ.
文摘CRISPR/Cas9 genome editing technology can overcome many limitations of traditional breeding,offering enormous potential for crop improvement and food production.Although the direct delivery of Cas9-single guide RNA(sgRNA)ribonucleoprotein(RNP)complexes to grapevine(Vitis vinifera)protoplasts has been shown before,the regeneration of edited protoplasts into whole plants has not been reported.Here,we describe an efficient approach to obtain transgene-free edited grapevine plants by the transfection and subsequent regeneration of protoplasts isolated from embryogenic callus.As proof of concept,a single-copy green f luorescent protein reporter gene(GFP)in the grapevine cultivar Thompson Seedless was targeted and knocked out by the direct delivery of RNPs to protoplasts.CRISPR/Cas9 activity,guided by two independent sgRNAs,was confirmed by the loss of GFP f luorescence.The regeneration of GFP−protoplasts into whole plants was monitored throughout development,confirming that the edited grapevine plants were comparable in morphology and growth habit to wild-type controls.We report the first highly efficient protocol for DNA-free genome editing in grapevine by the direct delivery of preassembled Cas9-sgRNA RNP complexes into protoplasts,helping to address the regulatory concerns related to genetically modified plants.This technology could encourage the application of genome editing for the genetic improvement of grapevine and other woody crop plants.
基金The authors acknowledge the financial support from the Natural Science Foundation of China(Nos.21931002 and 22101123)the National Key Research and Development Program of China(2018YFB0704100)+4 种基金the Shenzhen Science and Technology Innovation Committee(no.JCYJ20200109140812302)the Leading talents of Guangdong province program(2016LJ06N507)the Guangdong Provincial Key Laboratory of Energy Materials for Electric Power(no.2018B030322001)the Guangdong Provincial Key Laboratory of Catalysis(no.2020B121201002)Outstanding Talents Training Fund in Shenzhen.
文摘For the further improvement of the power conversion efficiency(PCE)and stability of perovskite solar cells(PSCs),the buried interface between the perovskite and the electron transport layer is crucial.However,it is challenging to effectively optimize this interface as it is buried beneath the perovskite film.Herein,we have designed and synthesized a series of multifunctional organic-inorganic(OI)complexes as buried interfacial material to promote electron extraction,as well as the crystal growth of the perovskite.The OI complex with BF4−group not only eliminates oxygen vacancies on the SnO_(2) surface but also balances energy level alignment between SnO_(2) and perovskite,providing a favorable environment for charge carrier extraction.Moreover,OI complex with amine(−NH_(2))functional group can regulate the crystallization of the perovskite film via interaction with PbI2,resulting in highly crystallized perovskite film with large grains and low defect density.Consequently,with rational molecular design,the PSCs with optimal OI complex buried interface layer which contains both BF4−and−NH_(2) functional groups yield a champion device efficiency of 23.69%.More importantly,the resulting unencapsulated device performs excellent ambient stability,maintaining over 90%of its initial efficiency after 2000 h storage,and excellent light stability of 91.5%remaining PCE in the maximum power point tracking measurement(under continuous 100 mW cm−2 light illumination in N2 atmosphere)after 500 h.
基金financially supported by the National Basic Research and Development Program of China(No.2013CB632606)the National Natural Science Foundation of China(No.51274180)
文摘The preparation process of the Cr(III) bath was studied based on a perspective of accelerating the formation of active Cr(III) complexes. The results of ultraviolet-visible absorption spectroscopy (UV-Vis) and electrodeposition showed that active Cr(III) complexes in the bath prepared at room temperature in several days were rare for depositing chromium. The increase of heating temperature, time, and pH value during the bath preparation promoted the formation of active Cr(III) complexes. The chromium deposition rate increased with the concentration of active Cr(III) complexes increasing. Increasing the heating temperature from 60 to 96℃, the chromium deposition rate increased from 0.40 to 0.71μm/min. When the concentration of active Cr(III) complexes increased, the grain size of Cr coatings increased, and the carbon content of the coating decreased. It is deduced that Cr(H20)4(OH)L2+ (L is an organic ligand, and its valence is omitted) is a primary active Cr(III) complex.
基金supported by the National Natural Science Foundation of China(Nos.52075255,92160301,52175415,52205475,and 92060203)。
文摘The aerospace community widely uses difficult-to-cut materials,such as titanium alloys,high-temperature alloys,metal/ceramic/polymer matrix composites,hard and brittle materials,and geometrically complex components,such as thin-walled structures,microchannels,and complex surfaces.Mechanical machining is the main material removal process for the vast majority of aerospace components.However,many problems exist,including severe and rapid tool wear,low machining efficiency,and poor surface integrity.Nontraditional energy-assisted mechanical machining is a hybrid process that uses nontraditional energies(vibration,laser,electricity,etc)to improve the machinability of local materials and decrease the burden of mechanical machining.This provides a feasible and promising method to improve the material removal rate and surface quality,reduce process forces,and prolong tool life.However,systematic reviews of this technology are lacking with respect to the current research status and development direction.This paper reviews the recent progress in the nontraditional energy-assisted mechanical machining of difficult-to-cut materials and components in the aerospace community.In addition,this paper focuses on the processing principles,material responses under nontraditional energy,resultant forces and temperatures,material removal mechanisms,and applications of these processes,including vibration-,laser-,electric-,magnetic-,chemical-,advanced coolant-,and hybrid nontraditional energy-assisted mechanical machining.Finally,a comprehensive summary of the principles,advantages,and limitations of each hybrid process is provided,and future perspectives on forward design,device development,and sustainability of nontraditional energy-assisted mechanical machining processes are discussed.
基金supported by the Natural Science Foundation of Inner Mongolia (200508010210)the Education Department of Inner Mongolia (NJ06002, NJcxy08124)Science and Technology Bureau of Baotou (2007G1013)
文摘Three novel β-diketones (HPPP, HTPP, and HFPP) ligands were synthesized by Sonogashira coupling reaction and Claisen condensation. The structure of β-diketones was confirmed with elemental analysis, IR, NMR and MS spectra. Three new ternary complexes consisting of Eu(Ⅲ), β-diketones, and 1,10-phenanthroline(phen) were synthesized and characterized as TbL3phen (L=PPP, TPP, FPP) with elemental analysis, chemical analysis, and IR spectra, and their luminescence properties were studied.
文摘Ru(II)polypyridine complexes have attracted much attention as anticancer agents because of their unique photophysical,photochemical,and biological properties.Despite their promising therapeutic profile,the vast majority of compounds are associated with poor water solubility and poor cancer selectivity.Among the different strategies employed to overcome these pharmacological limitations,many research efforts have been devoted to the physical or covalent encapsulation of the Ru(II)polypyridine complexes into nanoparticles.This article highlights recent developments in the design,preparation,and physicochemical properties of Ru(II)polypyridine complex-loaded nanoparticles for their potential application in anticancer therapy.
基金gratefully acknowledge the financial support of the National Natural Science Foundation of China(22108145 and 21978143)the Shandong Province Natural Science Foundation(ZR2020QB189)+1 种基金State Key Laboratory of Heavy Oil Processing(SKLHOP202203008)the Talent Foundation funded by Province and Ministry Co-construction Collaborative Innovation Center of Eco-chemical Engineering(STHGYX2201).
文摘The novel Fe-N co-doped ordered mesoporous carbon with high catalytic activity in m-cresol removal was prepared by urea-assisted impregnation and simple pyrolysis method.During the preparation of the Fe-NC catalyst,the complexation of N elements in urea could anchor Fe,and the formation of C3N4during urea pyrolysis could also prevent migration and aggregation of Fe species,which jointly improve the dispersion and stability of Fe.The FeN4sites and highly dispersed Fe nanoparticles synergistically trigger the dual-site peroxymonosulfate (PMS) activation for highly efficient m-cresol degradation,while the ordered mesoporous structure of the catalyst could improve the mass transfer rate of the catalytic process,which together promote catalytic degradation of m-cresol by PMS activation.Reactive oxygen species (ROS) analytic experiments demonstrate that the system degrades m-cresol by free radical pathway mainly based on SO_(4)^(-)·and·OH,and partially based on·OH as the active components,and a possible PMS activation mechanism by 5Fe-50 for m-cresol degradation was proposed.This study can provide theoretical guidance for the preparation of efficient and stable catalysts for the degradation of organic pollutants by activated PMS.