The single crystal of cubic perovskite BaFeO3 shows multiple magnetic transitions and external stimulus sensitive magnetism.In this paper,a 5%-Co-doped BaFeO_(3)(i.e.BaFe_(0.95)Co_(0.05)O_(3))single crystal was grown ...The single crystal of cubic perovskite BaFeO3 shows multiple magnetic transitions and external stimulus sensitive magnetism.In this paper,a 5%-Co-doped BaFeO_(3)(i.e.BaFe_(0.95)Co_(0.05)O_(3))single crystal was grown by combining floating zone methods with high-pressure techniques.Such a slight Co doping has little effect on crystal structure,but significantly changes the magnetism from the parent antiferromagnetic ground state to a ferromagnetic one with the Curie temperature TC≈120 K.Compared with the parent BaFeO3 at the induced ferromagnetic state,the saturated magnetic moment of the doped BaFe_(0.95)Co_(0.05)O_(3) increases by about 10%and reaches 3.64μB/f.u.Resistivity and specific heat measurements show that the ferromagnetic ordering favors metallic-like electrical transport behavior for BaFe_(0.95)Co_(0.05)O_(3).The present work indicates that Co-doping is an effective method to tune the magnetic and electric properties for the cubic perovskite phase of BaFeO_(3).展开更多
Two experimental single crystal superalloys with 2% Cr and 4% Cr (mass fraction) were cast in a directionally solidified furnace, while other alloying element contents were kept unchanged. The effects of Cr content on...Two experimental single crystal superalloys with 2% Cr and 4% Cr (mass fraction) were cast in a directionally solidified furnace, while other alloying element contents were kept unchanged. The effects of Cr content on the microstructure, phase stability, tensile properties at 1100 °C and stress rupture properties at 1070 °C and 160 MPa of the single crystal superalloy were investigated. The results show that the size ofγ′ phase particles become small and uniform, and the cubic shape turns a little regular with the increase of Cr content. Theγ′ directional coarsening and rafting were observed in the 2% Cr and 4% Cr alloys after long term aging (LTA) at 1100 °C. The rafting rate ofγ′ phase increased with increasing Cr content. Needle-shaped topologically close packed (TCP) phases precipitated and grew along fixed direction in both alloys. The precipitating rate and volume fraction of TCP phases significantly increased with the increase of Cr content. The tensile property of the alloy increased and the stress rupture properties of the alloy decreased with the increase of Cr content at high temperature. The increase of Cr content increased the partition ratio of TCP forming elements, Re, W, and Mo, and the saturation degrees of these elements inγ phases increased. Therefore, the high temperature phase stability of the alloy decreased with the increase of Cr content.展开更多
Molecular dynamics simulations are performed to investigate the influence of irradiation damage on the mechanical properties of copper. In the simulation, the energy of primary knocked-on atoms (PKAs) ranges from 1 ...Molecular dynamics simulations are performed to investigate the influence of irradiation damage on the mechanical properties of copper. In the simulation, the energy of primary knocked-on atoms (PKAs) ranges from 1 to 10 keV, and the results indicate that the number of point defects (vacancies and interstitials) increases linearly with the PKA energy. We choose three kinds of simulation samples: un-irradiated and irradiated samples, and comparison samples. The un-irradiated samples are defect-free, while irradiation induces vacancies and interstitials in the irradiated samples. It is found that due to the presence of the irradiation-induced defects, the compressive Young modulus of the single-crystal Cu increases, while the tensile Young modulus decreases, and that both the tensile and compressive yield stresses experience a dramatic decrease. To analyze the effects of vacancies and interstitials independently, the mechanical properties of the comparison samples, which only contain randomly distributed vacancies, are investigated. The results indicate that the vacancies are responsible for the change of Young modulus, while the interstitials determine the yield strain.展开更多
In order to reveal the temperature dependence of anisotropic stress?rupture behavior of SRR99 single crystal superalloys under conditions of temperature ranging from 650 to 1 040 °C and typical stresses,fracture...In order to reveal the temperature dependence of anisotropic stress?rupture behavior of SRR99 single crystal superalloys under conditions of temperature ranging from 650 to 1 040 °C and typical stresses,fracture morphologies and microstructure evolution were investigated by SEM and TEM.From the Larson-Miller curves,it is found that single crystal with [001] orientation has the optimum stress rupture property in comparison with [011] and [111] orientations at lower and intermediate temperature.With increasing temperature to 1 040 °C,stress-rupture properties of single crystals with three principal orientations tend to be equivalent.Based on the fracture surface and microstructural observations,superior stress?rupture behavior of single crystal with [001] orientation was rationalized and the effect of misorientation of single crystal on stress rupture property was also discussed.展开更多
The effects of carbon on the microstructure and mechanical properties of DD99 single crystal superalloy were investigated. The results show that stress rupture life of DD99 alloy possesses peak value at carbon content...The effects of carbon on the microstructure and mechanical properties of DD99 single crystal superalloy were investigated. The results show that stress rupture life of DD99 alloy possesses peak value at carbon content of 0.03%(mass fraction). As carbon addition is greater than 0.03%, the stress-rupture life decreases with the increase of carbon content. The tensile strength and yield strength of DD99 alloy reach peak value at 0.08% carbon and 760℃. On the contrary, the tensile strength and yield strength have minimal values at 0.08% carbon and 900℃. The tensile ductility of DD99 alloy basically decreases with the increase of carbon content at 760℃or 900℃. The amount of carbides greatly increases with the addition of carbon content. Dislocation moving is retarded by carbides so that dislocation networks are apt to form, which has an important role on the mechanical properties in DD99 single crystal superalloy.展开更多
The single crystal blade is one of the key technologies for improving the performance, durability and reliability of aero-engines and ground gas-turbine engines. However, the anisotropic mechanical properties of the s...The single crystal blade is one of the key technologies for improving the performance, durability and reliability of aero-engines and ground gas-turbine engines. However, the anisotropic mechanical properties of the single crystal material makes a great deal of difficulties on the development and the application of the single crystal blade, which is a challenge for the engineering application of the single crystal superalloy and the theoretic bases of the application. Some researches on the strength analysis and the life prediction of the anisotropic single crystal blade were carried out by the authors' research team. They are as follows. The crystallographic constitutive models for the plastic and the creep behaviors and the method of the rupture life prediction were established and verified. The tensile or the creep experiments for DD3 single crystal alloy with different orientations under different temperatures and different tensile rates or under different temperatures and different stress levels were carried out. The experimental data and the anisotropic properties at intermediate and high temperatures revealed by the experiments are significant for the application of the single crystal alloy. In addition, the experimental research for a kind of single crystal blade was also made. As the application of the researches the strength analysis and the life prediction were carried out for the single crystal blade of a certain aeroengine. In this part, the experimental research work is describled, and the constitutive models and applications have been described in part I.展开更多
A new cobalt(Ⅱ) coordination polymer with the formula of [Co(iqnc)2]n(1, iqnc = l-isoquinolinecarboxylate) has been synthesized through hydrothermal synthesis and structurally characterized by single-crystal X-...A new cobalt(Ⅱ) coordination polymer with the formula of [Co(iqnc)2]n(1, iqnc = l-isoquinolinecarboxylate) has been synthesized through hydrothermal synthesis and structurally characterized by single-crystal X-ray diffraction method. The title coordination polymer represents a two-dimensional layer structure featuring adjacent one-dimensional [Co(iqnc)2]n chains connected with each other by uncoordinated oxygen atoms of carboxylate. Crystal data: monoclinic, space group P21/c, a = 15.4302(2), b = 5.6743(7), c = 9.2307(1) A, β = 98.459(2)o, V = 799.41(2) A3, Z = 2, S = 1.019, the final R = 0.0346, w R = 0.0876(I 2σ(I)) and R = 0.0477 and wR = 0.1159 for all reflections. In addition, elemental analysis, IR, and magnetism properties are presented.展开更多
To understand the deformation and removal mechanism of material on nano-scale at ultralow loads,a systemic study on AFM micro/nano-machining on single crystal ailicon is conducted. The results indicate that AFM nano- ...To understand the deformation and removal mechanism of material on nano-scale at ultralow loads,a systemic study on AFM micro/nano-machining on single crystal ailicon is conducted. The results indicate that AFM nano- machining has a precisely dimensional controllability and a good surface quality on nanometer scale.A SEM is adopted to observe nano-machined region and chips,the results indicate that the material removal mechanisms change with the applied normal load. An XPS is used to analyze the changes of chemical composition inside and outside the nano-machined region respectively.The nano-indentation which is conducted with the same AFM diamond tip on the machined region shows a big discrepancy compared with that on the macro-scale. The calculated results show higher nano-hardness and elastic modulus than normal values .This phenomenon on be regarded as the indentation size effect(ISE).展开更多
Various cooling scenarios(water,oil,air and furnace)were employed to study the impacts of the solution cooling rate(SCR)on the microstructure and creep behavior of a novel single-crystal(SX)superalloy.The results show...Various cooling scenarios(water,oil,air and furnace)were employed to study the impacts of the solution cooling rate(SCR)on the microstructure and creep behavior of a novel single-crystal(SX)superalloy.The results showed that the cubic degree and size of theγphases were inversely proportional to the SCR.The creep life first increased and then dropped dramatically with a reduction in the SCR.The creep life of the sample cooled with air cooling(AC)was the highest,up to 144.90 h at 800℃/750 MPa and160.15 h at 1100℃/137 MPa.During creep at 800℃/750 MPa,the improved creep life of the AC sample was mainly attributed to the fine cubicγphases,which decreased the rate ofγ-phase coarsening and favoured plastic deformation by promoting the active movement of dislocations.The AC helped theγphases become rich in Al,Ti and Ta while depleted in Co and Cr,which enhanced its stacking fault energy,thus promoting the formation of dislocation locks.Meanwhile,the largest negative lattice misfit caused by AC induced denserγ/γinterface dislocation networks at 1100℃/137 MPa,which efficiently reduced the minimum creep rate.The calculated average dislocation spacing results indicated that the smallest density of excess dislocations corresponded to the AC sample,proving its greatest creep resistance.Interestingly,the size of the secondaryγphases first decreased and then increased sharply with decreasing SCR during creep at 1100℃/137 MPa,when fine secondaryγphases had a positive role in the blockage of dislocation movement in the matrix.Eventually,the comprehensive SCR effect was explored to provide more guidance in the design of Re-free SX superalloys.展开更多
Single crystals of R2PdGe6 (R=Pr, Gd and Tb) compounds were grown by the Bi-flux method. Pr2PdGe6 is an antiferromagnetic compound with Neel temperature Tn=15K, in which a field-induced magnetic transition (spin flip)...Single crystals of R2PdGe6 (R=Pr, Gd and Tb) compounds were grown by the Bi-flux method. Pr2PdGe6 is an antiferromagnetic compound with Neel temperature Tn=15K, in which a field-induced magnetic transition (spin flip) occurs when a magnetic field is applied along either a or b axis;a small magnetization and hysteresis loop were observed when a field is applied along c axis. Gd2PdGe6 is a colli near antiferromagnetic compound with Tn=37K along b axis. Tb2PdGe6 is an antiferromagnetic compound with Tn =48 K and its hard magnetization direction is along b axis. The temperature dependences of the resista nee of the entire three compounds prese nt inflection points at the respective Tn-A large resista nee (as well as magnetoresistance) change can be found at the spin flip transition of Pr2 PdGe6, but the change is not obvious at the spin flop transition of Gd2PdGe6.展开更多
The polymeric Co(Ⅱ) complex[Co(Hdhpc)(py)]n(1)(py = pyridine,H3dhpc =2,6-dihydroxypyridine-4-carboxyl acid) was prepared and characterized.X-ray diffraction data revealed that the compound crystallizes in d...The polymeric Co(Ⅱ) complex[Co(Hdhpc)(py)]n(1)(py = pyridine,H3dhpc =2,6-dihydroxypyridine-4-carboxyl acid) was prepared and characterized.X-ray diffraction data revealed that the compound crystallizes in dimorphic 1α and 1β forms at room and low temperature,respectively.The former crystallizes in the orthorhombic crystal system,space group Pbcm with a =7.209(1),b = 14.834(3),c = 15.376(3) A°,V= 1644.3(5)A°3,Z = 4,C(16)H(13)CoN3O4,Mr = 370.22,Dc= 1.496 g/cm^3,F(000) = 756,μ = 1.068 mm^-1,R = 0.0633 and wR = 0.1192.While 1β is attributed to the monoclinic space group C2/c with a = 32.102(4),b = 7.022,c = 14.945(2)A°,β = 109.052(5)°,V= 3184.4(6) A°3,Z= 8,Dc= 1.544 g/cm^3,F(000) = 1512,μ = 1.103 mm^-1,R = 0.0428 and wR =0.0797.The conformation changes of pyridines between Co-citrazinate planes leading to a reversible single-crystal to single-crystal transformation.The variable temperature magnetic data indicate a weak ferrimagnetism.展开更多
基金Project supported by the National Natural Science Foundation of China(Grant Nos.11934017 and 11921004)the National Key Research and Development Program of China(Grant Nos.2021YFA1400300,2018YFE0103200,and 2018YFA0305700)+1 种基金the Beijing Natural Science Foundation(Grant No.Z200007)the Fund from the Chinese Academy of Sciences(Grant No.XDB33000000).
文摘The single crystal of cubic perovskite BaFeO3 shows multiple magnetic transitions and external stimulus sensitive magnetism.In this paper,a 5%-Co-doped BaFeO_(3)(i.e.BaFe_(0.95)Co_(0.05)O_(3))single crystal was grown by combining floating zone methods with high-pressure techniques.Such a slight Co doping has little effect on crystal structure,but significantly changes the magnetism from the parent antiferromagnetic ground state to a ferromagnetic one with the Curie temperature TC≈120 K.Compared with the parent BaFeO3 at the induced ferromagnetic state,the saturated magnetic moment of the doped BaFe_(0.95)Co_(0.05)O_(3) increases by about 10%and reaches 3.64μB/f.u.Resistivity and specific heat measurements show that the ferromagnetic ordering favors metallic-like electrical transport behavior for BaFe_(0.95)Co_(0.05)O_(3).The present work indicates that Co-doping is an effective method to tune the magnetic and electric properties for the cubic perovskite phase of BaFeO_(3).
文摘Two experimental single crystal superalloys with 2% Cr and 4% Cr (mass fraction) were cast in a directionally solidified furnace, while other alloying element contents were kept unchanged. The effects of Cr content on the microstructure, phase stability, tensile properties at 1100 °C and stress rupture properties at 1070 °C and 160 MPa of the single crystal superalloy were investigated. The results show that the size ofγ′ phase particles become small and uniform, and the cubic shape turns a little regular with the increase of Cr content. Theγ′ directional coarsening and rafting were observed in the 2% Cr and 4% Cr alloys after long term aging (LTA) at 1100 °C. The rafting rate ofγ′ phase increased with increasing Cr content. Needle-shaped topologically close packed (TCP) phases precipitated and grew along fixed direction in both alloys. The precipitating rate and volume fraction of TCP phases significantly increased with the increase of Cr content. The tensile property of the alloy increased and the stress rupture properties of the alloy decreased with the increase of Cr content at high temperature. The increase of Cr content increased the partition ratio of TCP forming elements, Re, W, and Mo, and the saturation degrees of these elements inγ phases increased. Therefore, the high temperature phase stability of the alloy decreased with the increase of Cr content.
基金Project supported by the National Basic Research Program of China(Grant No.2011CB013101)the National Natural Science Foundation of China(GrantNos.11172001,91226202,and 11225208)
文摘Molecular dynamics simulations are performed to investigate the influence of irradiation damage on the mechanical properties of copper. In the simulation, the energy of primary knocked-on atoms (PKAs) ranges from 1 to 10 keV, and the results indicate that the number of point defects (vacancies and interstitials) increases linearly with the PKA energy. We choose three kinds of simulation samples: un-irradiated and irradiated samples, and comparison samples. The un-irradiated samples are defect-free, while irradiation induces vacancies and interstitials in the irradiated samples. It is found that due to the presence of the irradiation-induced defects, the compressive Young modulus of the single-crystal Cu increases, while the tensile Young modulus decreases, and that both the tensile and compressive yield stresses experience a dramatic decrease. To analyze the effects of vacancies and interstitials independently, the mechanical properties of the comparison samples, which only contain randomly distributed vacancies, are investigated. The results indicate that the vacancies are responsible for the change of Young modulus, while the interstitials determine the yield strain.
基金Projects (2010CB631200,2010CB631206) supported by the National Basic Research Program of ChinaProject (50931004) supported by the National Natural Science Foundation of China
文摘In order to reveal the temperature dependence of anisotropic stress?rupture behavior of SRR99 single crystal superalloys under conditions of temperature ranging from 650 to 1 040 °C and typical stresses,fracture morphologies and microstructure evolution were investigated by SEM and TEM.From the Larson-Miller curves,it is found that single crystal with [001] orientation has the optimum stress rupture property in comparison with [011] and [111] orientations at lower and intermediate temperature.With increasing temperature to 1 040 °C,stress-rupture properties of single crystals with three principal orientations tend to be equivalent.Based on the fracture surface and microstructural observations,superior stress?rupture behavior of single crystal with [001] orientation was rationalized and the effect of misorientation of single crystal on stress rupture property was also discussed.
文摘The effects of carbon on the microstructure and mechanical properties of DD99 single crystal superalloy were investigated. The results show that stress rupture life of DD99 alloy possesses peak value at carbon content of 0.03%(mass fraction). As carbon addition is greater than 0.03%, the stress-rupture life decreases with the increase of carbon content. The tensile strength and yield strength of DD99 alloy reach peak value at 0.08% carbon and 760℃. On the contrary, the tensile strength and yield strength have minimal values at 0.08% carbon and 900℃. The tensile ductility of DD99 alloy basically decreases with the increase of carbon content at 760℃or 900℃. The amount of carbides greatly increases with the addition of carbon content. Dislocation moving is retarded by carbides so that dislocation networks are apt to form, which has an important role on the mechanical properties in DD99 single crystal superalloy.
文摘The single crystal blade is one of the key technologies for improving the performance, durability and reliability of aero-engines and ground gas-turbine engines. However, the anisotropic mechanical properties of the single crystal material makes a great deal of difficulties on the development and the application of the single crystal blade, which is a challenge for the engineering application of the single crystal superalloy and the theoretic bases of the application. Some researches on the strength analysis and the life prediction of the anisotropic single crystal blade were carried out by the authors' research team. They are as follows. The crystallographic constitutive models for the plastic and the creep behaviors and the method of the rupture life prediction were established and verified. The tensile or the creep experiments for DD3 single crystal alloy with different orientations under different temperatures and different tensile rates or under different temperatures and different stress levels were carried out. The experimental data and the anisotropic properties at intermediate and high temperatures revealed by the experiments are significant for the application of the single crystal alloy. In addition, the experimental research for a kind of single crystal blade was also made. As the application of the researches the strength analysis and the life prediction were carried out for the single crystal blade of a certain aeroengine. In this part, the experimental research work is describled, and the constitutive models and applications have been described in part I.
基金Supported by the National Natural Science Foundation of China(No.21203160)Education Department Foundation of Shaanxi Province(No.12JK0631)+1 种基金Natural Science Foundation of Shaanxi Province(No.2013JM2013)Special Research Fund of Xianyang Normal University(No.11XSYK204,11XSYK205,12XSYK023)
文摘A new cobalt(Ⅱ) coordination polymer with the formula of [Co(iqnc)2]n(1, iqnc = l-isoquinolinecarboxylate) has been synthesized through hydrothermal synthesis and structurally characterized by single-crystal X-ray diffraction method. The title coordination polymer represents a two-dimensional layer structure featuring adjacent one-dimensional [Co(iqnc)2]n chains connected with each other by uncoordinated oxygen atoms of carboxylate. Crystal data: monoclinic, space group P21/c, a = 15.4302(2), b = 5.6743(7), c = 9.2307(1) A, β = 98.459(2)o, V = 799.41(2) A3, Z = 2, S = 1.019, the final R = 0.0346, w R = 0.0876(I 2σ(I)) and R = 0.0477 and wR = 0.1159 for all reflections. In addition, elemental analysis, IR, and magnetism properties are presented.
基金This project is supported by National Natural ScienceFoundation of China (No.59835180) and Science andTechnology Foundatio
文摘To understand the deformation and removal mechanism of material on nano-scale at ultralow loads,a systemic study on AFM micro/nano-machining on single crystal ailicon is conducted. The results indicate that AFM nano- machining has a precisely dimensional controllability and a good surface quality on nanometer scale.A SEM is adopted to observe nano-machined region and chips,the results indicate that the material removal mechanisms change with the applied normal load. An XPS is used to analyze the changes of chemical composition inside and outside the nano-machined region respectively.The nano-indentation which is conducted with the same AFM diamond tip on the machined region shows a big discrepancy compared with that on the macro-scale. The calculated results show higher nano-hardness and elastic modulus than normal values .This phenomenon on be regarded as the indentation size effect(ISE).
基金financially supported by the National Key R&D Program of China(No.2017YFA0700704)the National Science and Technology Major Project(No.2017-VI-0002-0072)the Youth Innovation Promotion Association,Chinese Academy of Sciences and Innovation Academy for Light-duty Gas Turbine,Chinese Academy of Sciences(No.CXYJJ20-MS-03)。
文摘Various cooling scenarios(water,oil,air and furnace)were employed to study the impacts of the solution cooling rate(SCR)on the microstructure and creep behavior of a novel single-crystal(SX)superalloy.The results showed that the cubic degree and size of theγphases were inversely proportional to the SCR.The creep life first increased and then dropped dramatically with a reduction in the SCR.The creep life of the sample cooled with air cooling(AC)was the highest,up to 144.90 h at 800℃/750 MPa and160.15 h at 1100℃/137 MPa.During creep at 800℃/750 MPa,the improved creep life of the AC sample was mainly attributed to the fine cubicγphases,which decreased the rate ofγ-phase coarsening and favoured plastic deformation by promoting the active movement of dislocations.The AC helped theγphases become rich in Al,Ti and Ta while depleted in Co and Cr,which enhanced its stacking fault energy,thus promoting the formation of dislocation locks.Meanwhile,the largest negative lattice misfit caused by AC induced denserγ/γinterface dislocation networks at 1100℃/137 MPa,which efficiently reduced the minimum creep rate.The calculated average dislocation spacing results indicated that the smallest density of excess dislocations corresponded to the AC sample,proving its greatest creep resistance.Interestingly,the size of the secondaryγphases first decreased and then increased sharply with decreasing SCR during creep at 1100℃/137 MPa,when fine secondaryγphases had a positive role in the blockage of dislocation movement in the matrix.Eventually,the comprehensive SCR effect was explored to provide more guidance in the design of Re-free SX superalloys.
基金supported financially by the National Natural Science Foundation of China (Nos. 51671192 and 51531008)the Chinese Academy of Sciences (No. KJZD-EW-M05)the National Key Research and Development Program of China (No. 2017YFB0702701)
文摘Single crystals of R2PdGe6 (R=Pr, Gd and Tb) compounds were grown by the Bi-flux method. Pr2PdGe6 is an antiferromagnetic compound with Neel temperature Tn=15K, in which a field-induced magnetic transition (spin flip) occurs when a magnetic field is applied along either a or b axis;a small magnetization and hysteresis loop were observed when a field is applied along c axis. Gd2PdGe6 is a colli near antiferromagnetic compound with Tn=37K along b axis. Tb2PdGe6 is an antiferromagnetic compound with Tn =48 K and its hard magnetization direction is along b axis. The temperature dependences of the resista nee of the entire three compounds prese nt inflection points at the respective Tn-A large resista nee (as well as magnetoresistance) change can be found at the spin flip transition of Pr2 PdGe6, but the change is not obvious at the spin flop transition of Gd2PdGe6.
基金supported by the National Natural Science Foundation of China(No.21173074,J1210040 and J1103312)
文摘The polymeric Co(Ⅱ) complex[Co(Hdhpc)(py)]n(1)(py = pyridine,H3dhpc =2,6-dihydroxypyridine-4-carboxyl acid) was prepared and characterized.X-ray diffraction data revealed that the compound crystallizes in dimorphic 1α and 1β forms at room and low temperature,respectively.The former crystallizes in the orthorhombic crystal system,space group Pbcm with a =7.209(1),b = 14.834(3),c = 15.376(3) A°,V= 1644.3(5)A°3,Z = 4,C(16)H(13)CoN3O4,Mr = 370.22,Dc= 1.496 g/cm^3,F(000) = 756,μ = 1.068 mm^-1,R = 0.0633 and wR = 0.1192.While 1β is attributed to the monoclinic space group C2/c with a = 32.102(4),b = 7.022,c = 14.945(2)A°,β = 109.052(5)°,V= 3184.4(6) A°3,Z= 8,Dc= 1.544 g/cm^3,F(000) = 1512,μ = 1.103 mm^-1,R = 0.0428 and wR =0.0797.The conformation changes of pyridines between Co-citrazinate planes leading to a reversible single-crystal to single-crystal transformation.The variable temperature magnetic data indicate a weak ferrimagnetism.