Developing low-cost but efficient hydrogen evolution reaction(HER)electrocatalysts over whole pH values is a significant but daunting task for the large-scale application of electrochemical hydrogen production.Herein,...Developing low-cost but efficient hydrogen evolution reaction(HER)electrocatalysts over whole pH values is a significant but daunting task for the large-scale application of electrochemical hydrogen production.Herein,we develop,for the first time,a scalable MOF-assisted strategy for the fabrication and microstructural optimization of multi-shelled hollow N-doped carbon nanosheet arrays with confined Co/CoP heterostructures on carbon cloth(Co/CoP@NC/CC)for boosting HER performances.The key to this strategy is the step-by-step epitaxial growth of unprecedented multilayer ZIF-L arrays on carbon cloth,which are subsequently pyrolyzed and controllably phosphorized to achieve the precise control over the shell number and nanoarchitectures of the Co/CoP@NC/CC.Impressively,the HER performances can be significantly enhanced by increasing hollow shell number,and the optimal triple-shelled hollow Co/CoP@NC/CC exhibits low overpotentials of 86,78 and 145 mV in acidic,alkaline and neutral media to deliver a current density of 10 mA cm^(-2),respectively,ranking as one of the best Co-based HER electrocatalysts over whole pH values.Further DFT calculations suggest that the Co/CoP heterostructures can effectively boost the cleavage of H–OH to generate protons and optimize the adsorption energy of hydrogen(ΔG_(H*)),which,together with the large electrode/electrolyte interface and accelerated charge/mass transfer of multi-shelled hollow array structure as well as the good conductivity and dispersity,are responsible for the remarkably improved HER performances.This study not only provides a new toolbox for enriching the family of multi-shelled nanoarchitecture materials,but also points out a general and effective route to develop highly efficient self-supported electrode materials for energy-related applications and beyond.展开更多
基金financially supported from the National Natural Science Foundation of China (21825802)Guangdong Natural Science Funds for Distinguished Young Scholar (2018B030306050)the Natural Science Foundation of Guangdong Province (2017A030312005)。
文摘Developing low-cost but efficient hydrogen evolution reaction(HER)electrocatalysts over whole pH values is a significant but daunting task for the large-scale application of electrochemical hydrogen production.Herein,we develop,for the first time,a scalable MOF-assisted strategy for the fabrication and microstructural optimization of multi-shelled hollow N-doped carbon nanosheet arrays with confined Co/CoP heterostructures on carbon cloth(Co/CoP@NC/CC)for boosting HER performances.The key to this strategy is the step-by-step epitaxial growth of unprecedented multilayer ZIF-L arrays on carbon cloth,which are subsequently pyrolyzed and controllably phosphorized to achieve the precise control over the shell number and nanoarchitectures of the Co/CoP@NC/CC.Impressively,the HER performances can be significantly enhanced by increasing hollow shell number,and the optimal triple-shelled hollow Co/CoP@NC/CC exhibits low overpotentials of 86,78 and 145 mV in acidic,alkaline and neutral media to deliver a current density of 10 mA cm^(-2),respectively,ranking as one of the best Co-based HER electrocatalysts over whole pH values.Further DFT calculations suggest that the Co/CoP heterostructures can effectively boost the cleavage of H–OH to generate protons and optimize the adsorption energy of hydrogen(ΔG_(H*)),which,together with the large electrode/electrolyte interface and accelerated charge/mass transfer of multi-shelled hollow array structure as well as the good conductivity and dispersity,are responsible for the remarkably improved HER performances.This study not only provides a new toolbox for enriching the family of multi-shelled nanoarchitecture materials,but also points out a general and effective route to develop highly efficient self-supported electrode materials for energy-related applications and beyond.