In this study,the possibility of obtaining micro and nano-scaled Co/Ni bi-layered films by use of the electrochemical method was investigated.The electrodeposition process was performed with presence and absence of a ...In this study,the possibility of obtaining micro and nano-scaled Co/Ni bi-layered films by use of the electrochemical method was investigated.The electrodeposition process was performed with presence and absence of a uniform external magnetic field up to 1T to examine its influence on structure and morphology of the obtained thin films. Afterwards,each sample was annealed under high magnetic field with strength up to 12 T at 623 K,what allowed compare and determine the changes in morphology and structure,before and after heat treatment.The Co/Ni bi-layered thin films were deposited onto an indium-doped tin oxide(ITO)-coated conducting glass substrate from sulfate baths with boric acid as an additive.The results show drastic changes in the morphology between macro and nano-scaled films which were strongly affected by an introduction of the magnetic field to the electrodeposition process.The annealing process allowed to determine the nucleus transition and showed that under the high temperature treatment it is possible to control the growth mode as well as the phase composition changes.展开更多
The oxidation kinetics,surface morphology and phase structure of oxide films grown on 25Cr20Ni alloy in air-H2O and H2-H2O atmospheres at 900 ℃ for 20 h were investigated.The anti-coking performance and resistance to...The oxidation kinetics,surface morphology and phase structure of oxide films grown on 25Cr20Ni alloy in air-H2O and H2-H2O atmospheres at 900 ℃ for 20 h were investigated.The anti-coking performance and resistance to carburization of the two oxide films were compared using 25Cr20Ni alloy tubes with an inner diameter of 10 mm and a length of 850 mm in a bench scale naphtha steam pyrolysis unit.The oxidation kinetics followed a parabolic law in an air-H2O atmosphere and a logarithm law in a H2-H2O atmosphere in the steady-state stage.The oxide film grown in the air-H2O atmosphere had cracks where the elements Fe and Ni were enriched and the un-cracked area was covered with octahedral-shaped MnCr2O4 spinels and Cr1.3Fe0.7O3 oxide clusters,while the oxide film grown in the H2-H2O atmosphere was intact and completely covered with dense standing blade MnCr2O4 spinels.In the pyrolysis tests,the anti-coking performance and resistance to carburization of the oxide film grown in the H2-H2O atmosphere were far better than that in the air-H2O atmosphere.The mass of coke formed in the oxide film grown in the H2-H2O atmosphere was less than 10% of that in the air-H2O atmosphere.The Cr1.3Fe0.7O3 oxide clusters converted into Cr23C6 carbides and the cracks were filled with carbon in the oxide film grown in the air-H2O atmosphere after repeated coking and decoking tests,while the dense standing blade MnCr2O4 spinels remained unchanged in the oxide film grown in the H2-H2O atmosphere.The ethylene,propylene and butadiene yields in the pyrolysis tests were almost the same for the two oxide films.展开更多
Ni80Fe20/Ni48Fe12Cr40 bilayer films and Ni80Fe20 monolayer films were deposited at room temperature on SiO2/Si(100) substrates by electron beam evaporation. The influence of the thickness of the Ni48Fe12Cr40 underla...Ni80Fe20/Ni48Fe12Cr40 bilayer films and Ni80Fe20 monolayer films were deposited at room temperature on SiO2/Si(100) substrates by electron beam evaporation. The influence of the thickness of the Ni48Fe12Cr40 underlayer on the structure, magnetization, and magnetoresistance of the Ni80Fe20/Ni48Fe12Cr40 bilayer film was investigated. The thickness of the Ni48Fe12Cr40 layer varied from about 1 nm to 18 nm while the Ni80Fe20 layer thickness was fixed at 45 nm. For the as-deposited bilayer films the introducing of the Ni48Fe12Cr40 underlayer promotes both the (111) texture and grain growth in the Ni80Fe20 layer. The Ni48Fe12Cr40 underlayer has no significant influence on the magnetic moment of the Ni80Fe20/Ni48Fe12Cr40 bilayer film. However, the coercivity of the bilayer film changes with the thickness of the Ni48Fe12Cr40 undedayer. The optimum thickness of the Ni48Fe12Cr40 underlayer for improving the anisotropic magnetoresistance effect of the Ni80Fe20/Ni48Fe12Cr40 bilayer film is about 5 nm. With a decrease in temperature from 300 K to 81 K, the anisotropic magnetoresistance ratio of the Ni80Fe20 (45 nm)/Ni48Fe12Cr40 (5 nm) bilayer film increases linearly from 2.1% to 4.8% compared with that of the Ni80Fe20 monolayer film from 1.7% to 4.0%.展开更多
Three kinds of NiTi films with different Ni contents were prepared by DC magnetron sputtering. The crystallization kinetics of amorphous films was determined by using non-isothermal single- scan techniques. The result...Three kinds of NiTi films with different Ni contents were prepared by DC magnetron sputtering. The crystallization kinetics of amorphous films was determined by using non-isothermal single- scan techniques. The results show that the activation energy of crystallization of Ni-rich NiTi film(Ni 51.10 at. pct, Ti 48.90 at. pct) is 715 kJ/mol; while that of Ti-rich films are similar: one is 445 kJ/mol (Ni 46.74 at. pct. Ti 53.26 at. pct), the other is 418 kJ/mol (Ni 43.21 at. pct, Ti 56.7g at. pct), which i5 lower than Ni-rich film. The Avrami parameter n of different films are 0.92 and 0.74 for Ni-rich film and Ti-rich films, respectively. The difference of kinetic parameters for NiTi films with various Ni contents implies that the crystallization behaviors of these films are distinct, which is confirmed by the calculated isothermal kinetics at different temperatures. The thorough research on this phenomenon is in progress.展开更多
Ferromagnetic shape memory Ni-Mn-Ga films with 7M modulated structure were prepared on MgO (001) substrates by magnetron sputtering. Magnetization process with a typical two-hysteresis loop indicates the occurrence ...Ferromagnetic shape memory Ni-Mn-Ga films with 7M modulated structure were prepared on MgO (001) substrates by magnetron sputtering. Magnetization process with a typical two-hysteresis loop indicates the occurrence of the reversible magnetic field-induced reorientation. Magnetic domain structure and twin structure of the film were controlled by the in- terplay of the magnetic and temperature field. With cooling under an out-of-plane magnetic field, the evolution of magnetic domain structure reveals that martensitic transformation could be divided into two periods: nucleation and growth. With an in-plane magnetic field applied to a thermomagnetic-treated film, the evolution of magnetic domain structure gives evidence of a reorientation of twin variants of martensite. A microstructural model is described to define the twin structure and to produce the magnetic domain structure at the beginning of martensitic transformation; based on this model, the relationship between the twin structure and the magnetic domain structure for the treated film under an in-plane field is also described.展开更多
Al/Ni films were deposited on 128° Y-X LiNbO3 substrates by e-beam deposition. The influence of Ni underlayer on the microstructure, adhesion and resistivity of the Al/Ni films was investigated. It was found that...Al/Ni films were deposited on 128° Y-X LiNbO3 substrates by e-beam deposition. The influence of Ni underlayer on the microstructure, adhesion and resistivity of the Al/Ni films was investigated. It was found that Al films deposited on Ni underlayer thinner than 5 nm possessed strong texture. The textured Al/Ni films had a superior adhesion. Their resistivity decreased after annealing treatment at 200℃ for 30 min. With the textured Al/Ni films, a 2,30 GHz-range image-impedance connection SAW (Surface Acoustic Wave) filter was successfully fabricated.展开更多
Composite nickel hydroxide films were prepared by cathodic co electrodeposition from metal nitrate solution and characterized by cyclic voltammetry in 1.0 mol/L KOH solution. The codeposited light rare earth elements...Composite nickel hydroxide films were prepared by cathodic co electrodeposition from metal nitrate solution and characterized by cyclic voltammetry in 1.0 mol/L KOH solution. The codeposited light rare earth elements were lanthanum, cerium, praseodymium and neodymium. The films were analyzed by spectrophotometry and optical transmission. The results of the cyclic voltammetry in 1.0 mol/L KOH solution showed that the current density for oxygen evolution at the film electrode was affected by the co deposited rare earth metal ions in the film. About 20 mA/cm 2 increase of current density for oxygen evolution was found when the film was obtained from the solution with cerium (7% v/v) and nickel (93% v/v) nitrate. The effects of galvanostatic cathodic current density for the film formation on the oxygen evolution at the film electrodes from the alkaline were discussed.展开更多
Ferromagnetic Ni-Mn-Ga films were fabricated by depositing on MgO (001) substrates at temperatures from 673 K to 923 K. Microstructure, crystal structure, martensitic transformation behavior, and magnetic properties...Ferromagnetic Ni-Mn-Ga films were fabricated by depositing on MgO (001) substrates at temperatures from 673 K to 923 K. Microstructure, crystal structure, martensitic transformation behavior, and magnetic properties of the films were studied. With increasing deposition temperature, the surface morphology of the films transforms from granular to continu- ous. The martensitic transformation temperature is not dependent on deposition temperature; while transformation behavior is affected substantially by deposition temperature. X-ray analysis reveals that the film deposited at 873 K has a 7M marten- site phase, and its magnetization curve provides a typical step-increase, indicating the occurrence of magnetically induced reorientation (MIR). In situ magnetic domain structure observation on the film deposited at 873 K reflects that the marten- sitic transformation could be divided into two periods: nucleation and growth, in the form of stripe domains. The MIR occurs at the temperature at which martensitic transformation starts, and the switching field increases with the decrease of temperature due to damped thermal activation. The magnetically induced martensitic transformation is related to the difference of magnetization between martensite and austenite. A shift of martensite temperature of dT/dH = 0.43 K/T is observed, consistent with the theoretical value, 0.41 K/T.展开更多
Conductivities of Langmuir-Blodgett(LB) films of tetrabenzylthio- tetra-thiafulvalence-Ni(dmit)_2/stearic acid (SA)were described. This charge transfer complex was transferred with SA onto a glass plate coated with A1...Conductivities of Langmuir-Blodgett(LB) films of tetrabenzylthio- tetra-thiafulvalence-Ni(dmit)_2/stearic acid (SA)were described. This charge transfer complex was transferred with SA onto a glass plate coated with A1 electrodes. The relation of conductivities of LB films with molar ratio of SA was studied. The conductivities of LB films of TBT-TTF-Ni(dmit)_2/SA were measured under undoped and I_2 doped states. The maximum conductivity () of LB film was 40s/cm.展开更多
Sputter-deposited Au/NisoFeso bilayer films were annealed in a vacuum of 5×10^-4 Pa at 523 to 723 K for 30 or 90 min. The characteristics of the bilayer films were determined by Auger electron spectroscopy, field...Sputter-deposited Au/NisoFeso bilayer films were annealed in a vacuum of 5×10^-4 Pa at 523 to 723 K for 30 or 90 min. The characteristics of the bilayer films were determined by Auger electron spectroscopy, field emission scanning electron microscopy, X- ray diffractometry, a four-point probe technique, and an alternating gradient magnetometer. When the annealing temperature and time reached 723 K and 90 min, Ni and Fe atoms markedly diffused into the Au layer. The grain size of the Au layer did not change markedly with the annealing condition. As the annealing time was 30 min and the annealing temperature exceeded 573 K, the resistance of the bilayer film increased with increasing the annealing temperature. Furthermore, the resistance of the bilayer film annealed at 723 K for 90 ,nin was lower than that of the bilayer film annealed at 723 K for 30 min. All the bilayer films showed magnetic hysteresis loops. The as-deposited bilayer film showed a hard magnetization. The bilayer film represented an easy magnetization with increasing the annealing temperature. The Au/Ni50Fe50 film that annealed at 723 K for 90 min had the lowest saturation magnetization.展开更多
The densification and the fractal dimensions of carbon-nickel films annealed at different temperatures 300, 500, 800, and 1000℃ with emphasis on porosity evaluation are investigated. For this purpose, the refractive...The densification and the fractal dimensions of carbon-nickel films annealed at different temperatures 300, 500, 800, and 1000℃ with emphasis on porosity evaluation are investigated. For this purpose, the refractive index of films is determined from transmittance spectra. Three different regimes are identified, T 〈 500℃, 500℃ 〈 T 〈 800℃ and T 〉 800℃. The Rutherford baekscattering spectra show that with increasing the annealing temperature, the concentration of nickel atoms into films decreases. It is shown that the effect of annealing temperatures for increasing films densification at T 〈 500℃ and T 〉 800℃ is greater than the effect of nickel concentrations. It is observed that the effect of decreasing nickel atoms into films at 500℃ 〈 T 〈 800℃ strongly causes improving porosity and decreasing densification. The fractal dimensions of carbon-nickel films annealed from 300 to 500℃ are increased, while from 500 to 1000℃ these characteristics are decreased. It can be seen that at 800℃, films have maximum values of porosity and roughness.展开更多
Chemical bath deposition technique has been used to deposit Ni-doped Sb2S3 thin films onto glass substrate. Doping was carried out by adding 1, 3 and 5 wt% of Ni. Bath temperature was kept as 10℃ and films were annea...Chemical bath deposition technique has been used to deposit Ni-doped Sb2S3 thin films onto glass substrate. Doping was carried out by adding 1, 3 and 5 wt% of Ni. Bath temperature was kept as 10℃ and films were annealed at 250℃ under vacuum. Polycrystalline nature of films with an orthorhombic phase was analyzed by X-ray diffraction technique. Scanning electron microscopy was used for morphological study which shows that grains are spherical. Optical measurements using transmittance data indicated that films have a direct band gap of 1.00 - 2.60 eV with an absorption coefficient of ~104 cm<sup>-1</sup> in visible range. The average value of electrical conductivity was calculated as 1.66, 1.11 and 1.06 (Ω·cm)<sup>-1</sup> for as-deposited films and 1.90, 2.08 and 1.15 (Ω·cm)<sup>-1</sup> for annealed films while refractive indices were found as 2.18 - 3.38 and 1.91 - 3.74 respectively. The obtained films can be used for solar cell applications due to their good absorbing properties like higher absorption coefficient and refractive index values.展开更多
Electrical properties of C/Ni films are studied using four mosaic targets made of pure graphite and stripes of nickel with the surface areas of 1.78,3.21,3.92 and 4.64%.The conductivity data in the temperature range o...Electrical properties of C/Ni films are studied using four mosaic targets made of pure graphite and stripes of nickel with the surface areas of 1.78,3.21,3.92 and 4.64%.The conductivity data in the temperature range of400-500 K shows the extended state conduction.The conductivity data in the temperature range of 150-300 K shows the multi-phonon hopping conduction.The Berthelot-type conduction dominates in the temperature range of 50-150 K.The conductivity of the films in the temperature range about 〈 50 K is described in terms of variable-range hopping conduction.In low temperatures,the localized density of state around Fermi level(F)for the film deposition with 3.92% nickel has a maximum value of about 56.2×10^(17)cm^(-3)eV^(-1) with the minimum average hopping distance of about 3.43 × 10^(-6) cm.展开更多
Ni0.4Cu0.2Zn0.4Fe2O4 thin films were fabricated on Si substrates by using the sol-gel method and rapid thermal annealing (RTA), and their magnetic properties and crystalline structures were investigated. The samples...Ni0.4Cu0.2Zn0.4Fe2O4 thin films were fabricated on Si substrates by using the sol-gel method and rapid thermal annealing (RTA), and their magnetic properties and crystalline structures were investigated. The samples calcined at and above 600 ℃ have a single-phase spinel structure and the average grain size of the sample calcined at 600 ℃ is about 20 nm. The initial permeability μi, saturation magnetization M and coercivity H of the samples increase with the increasing calcination temperature. The sample calcined at 600 ℃ exhibits an excellent soft magnetic performance, which has μi=33.97 (10 MHz), Hc=15.62 Oe and Ms=228.877 emu/cm^3. Low-temperature annealing can enhance the magnetic properties of the samples. The work shows that using the sol-gel method in conjunction with RTA is a promising way to fabricate integrated thin-film devices.展开更多
The corrosion product films of two kinds of B30 tubes(similar to CDA 715)exposed to seawat- er for various periods of time were investigated by SEM,AES and XPS.The results show that the pro- tective corrosion product ...The corrosion product films of two kinds of B30 tubes(similar to CDA 715)exposed to seawat- er for various periods of time were investigated by SEM,AES and XPS.The results show that the pro- tective corrosion product film is thin,uniform and adherent.FeOOH is found to be present in the film surface,which confirms the hypothesis that iron hydroxide segregates at the surface of the film.The FeOOH promotes Ni enrichment in the corrosion layer by preventing Ni from running off.The corro- sion product film with no protectiveness is of lay- ered structure,loose and bad adherence.The for- mer film is formed through direct oxidation and the latter by precipitation and redeposition from dis- solved species.展开更多
The elexctrochemical properties of Dy (III), Ni(II) + Ni(II) indimethylformamide were studied by cyclic voltammetry on Pt or Cuelectrode. Black, metallic lustered, compact and well adhesive Dy-Nialloy films can be co-...The elexctrochemical properties of Dy (III), Ni(II) + Ni(II) indimethylformamide were studied by cyclic voltammetry on Pt or Cuelectrode. Black, metallic lustered, compact and well adhesive Dy-Nialloy films can be co-deposited on Cu electrode bysweeping-potential-deposition method within some potentials. SEM,EDAX and XRD were used to analyze the alloy films. The Dy content inthe Dy-Ni alloy film is up to 56.91/100 (mass fraction) and the Dy-Ni alloy films are amorphous.展开更多
Microstructure and phase transformation behaviors of the film annealed at different temperatures were studied by X-ray diffractometry (XRD), transmission electron microscopy and differential scanning calorimeter (...Microstructure and phase transformation behaviors of the film annealed at different temperatures were studied by X-ray diffractometry (XRD), transmission electron microscopy and differential scanning calorimeter (DSC). Also tensile tests were examined. For increasing annealed temperature, multiple phase transformations, transformations via a B19-phase or direct martensite/austenite transformtion are observed. The TiNiPd thin film annealed at 750℃ had relatively uniform martensite/austenite transformtion and shape memory effect. Martensite/austenite transformtion was also found in strain-temperature curves. Subsequent annealing at 450℃ had minor effect on transformation temperatures of Ti-Ni-Pd thin films but resulted in more uniform transformation and improved shape memory effect.展开更多
A study was conducted to develop low-friction, wear-resistant surfaces on high temperature alloys for the temperature range from 26℃ to 900℃. The approach investigated consists of modifying the naturally occurring o...A study was conducted to develop low-friction, wear-resistant surfaces on high temperature alloys for the temperature range from 26℃ to 900℃. The approach investigated consists of modifying the naturally occurring oxide film in order to improve its tribological properties. Improvement is needed at low temperatures where the oxide film, previously formed at high temperature, spalls due to stresses induced by sliding. Experiments with Ti, W and Ta additions show a beneficial effect when added to Ni and Ni-base alloys. Low friction can be maintained down to 100℃ from 900℃. For unalloyed Ni friction and surface damage increases at 400℃ to 500℃. Two new alloys were perpared based on the beneficial results of binary alloys and ZrO2 diffusion in Ni.Low friction at temperature above 500℃ and reasonable values (0.32~0.42) at low temperature are obtained.展开更多
The cyclic voltammetry and chronoamperometry were used to investigate the electrochemical behaviors of Er(Ⅲ) and Ni(Ⅱ) in LiClO 4 DMSO(dimethylsufoxide) system on Pt and Cu electrodes. Experimental results indica...The cyclic voltammetry and chronoamperometry were used to investigate the electrochemical behaviors of Er(Ⅲ) and Ni(Ⅱ) in LiClO 4 DMSO(dimethylsufoxide) system on Pt and Cu electrodes. Experimental results indicated that the reduction of Er(Ⅲ) to Er and Ni(Ⅱ) to Ni were irreversible in one step on Pt and Cu electrodes. The diffusion coefficient and electron transfer coefficient of Er(Ⅲ) in 0.01 mol·L -1 ErCl 3 -0.1 mol·L -1 LiClO 4 DMSO system at 303K were 1.47×10 -10 m 2·s -1 and 0.108 respectively, and the diffusion coefficient and electron transfer coefficient of Ni(Ⅱ) in 0.01 mol·L -1 NiCl 2-0.1 mol·L -1 LiClO 4 DMSO system at 303K were 3.38×10 -10 m 2·s -1 and 0.160 respectively. The homogeneous, strong adhesive Er Ni alloy films with metallic lu- stre was prepared by potentiostatic electrolysis on Cu electrode in ErCl 3 NiCl 2 LiClO 4 DMSO system at -1.90~ -2.55 V (vs SCE).展开更多
基金Item Sponsored by National Natural Science Foundation of China(51061130557,51101032)French ANR,Champagne-Ardenne Region Council and Pole MATERALIA(Programme COMAGNET,Grant No.2010-INTB-903-01)
文摘In this study,the possibility of obtaining micro and nano-scaled Co/Ni bi-layered films by use of the electrochemical method was investigated.The electrodeposition process was performed with presence and absence of a uniform external magnetic field up to 1T to examine its influence on structure and morphology of the obtained thin films. Afterwards,each sample was annealed under high magnetic field with strength up to 12 T at 623 K,what allowed compare and determine the changes in morphology and structure,before and after heat treatment.The Co/Ni bi-layered thin films were deposited onto an indium-doped tin oxide(ITO)-coated conducting glass substrate from sulfate baths with boric acid as an additive.The results show drastic changes in the morphology between macro and nano-scaled films which were strongly affected by an introduction of the magnetic field to the electrodeposition process.The annealing process allowed to determine the nucleus transition and showed that under the high temperature treatment it is possible to control the growth mode as well as the phase composition changes.
基金financially supported by the scientific research project of China Petroleum and Chemical Corporation(No.409075)
文摘The oxidation kinetics,surface morphology and phase structure of oxide films grown on 25Cr20Ni alloy in air-H2O and H2-H2O atmospheres at 900 ℃ for 20 h were investigated.The anti-coking performance and resistance to carburization of the two oxide films were compared using 25Cr20Ni alloy tubes with an inner diameter of 10 mm and a length of 850 mm in a bench scale naphtha steam pyrolysis unit.The oxidation kinetics followed a parabolic law in an air-H2O atmosphere and a logarithm law in a H2-H2O atmosphere in the steady-state stage.The oxide film grown in the air-H2O atmosphere had cracks where the elements Fe and Ni were enriched and the un-cracked area was covered with octahedral-shaped MnCr2O4 spinels and Cr1.3Fe0.7O3 oxide clusters,while the oxide film grown in the H2-H2O atmosphere was intact and completely covered with dense standing blade MnCr2O4 spinels.In the pyrolysis tests,the anti-coking performance and resistance to carburization of the oxide film grown in the H2-H2O atmosphere were far better than that in the air-H2O atmosphere.The mass of coke formed in the oxide film grown in the H2-H2O atmosphere was less than 10% of that in the air-H2O atmosphere.The Cr1.3Fe0.7O3 oxide clusters converted into Cr23C6 carbides and the cracks were filled with carbon in the oxide film grown in the air-H2O atmosphere after repeated coking and decoking tests,while the dense standing blade MnCr2O4 spinels remained unchanged in the oxide film grown in the H2-H2O atmosphere.The ethylene,propylene and butadiene yields in the pyrolysis tests were almost the same for the two oxide films.
文摘Ni80Fe20/Ni48Fe12Cr40 bilayer films and Ni80Fe20 monolayer films were deposited at room temperature on SiO2/Si(100) substrates by electron beam evaporation. The influence of the thickness of the Ni48Fe12Cr40 underlayer on the structure, magnetization, and magnetoresistance of the Ni80Fe20/Ni48Fe12Cr40 bilayer film was investigated. The thickness of the Ni48Fe12Cr40 layer varied from about 1 nm to 18 nm while the Ni80Fe20 layer thickness was fixed at 45 nm. For the as-deposited bilayer films the introducing of the Ni48Fe12Cr40 underlayer promotes both the (111) texture and grain growth in the Ni80Fe20 layer. The Ni48Fe12Cr40 underlayer has no significant influence on the magnetic moment of the Ni80Fe20/Ni48Fe12Cr40 bilayer film. However, the coercivity of the bilayer film changes with the thickness of the Ni48Fe12Cr40 undedayer. The optimum thickness of the Ni48Fe12Cr40 underlayer for improving the anisotropic magnetoresistance effect of the Ni80Fe20/Ni48Fe12Cr40 bilayer film is about 5 nm. With a decrease in temperature from 300 K to 81 K, the anisotropic magnetoresistance ratio of the Ni80Fe20 (45 nm)/Ni48Fe12Cr40 (5 nm) bilayer film increases linearly from 2.1% to 4.8% compared with that of the Ni80Fe20 monolayer film from 1.7% to 4.0%.
基金supported by the National Natural Science Foundation of China under grant 59731030.
文摘Three kinds of NiTi films with different Ni contents were prepared by DC magnetron sputtering. The crystallization kinetics of amorphous films was determined by using non-isothermal single- scan techniques. The results show that the activation energy of crystallization of Ni-rich NiTi film(Ni 51.10 at. pct, Ti 48.90 at. pct) is 715 kJ/mol; while that of Ti-rich films are similar: one is 445 kJ/mol (Ni 46.74 at. pct. Ti 53.26 at. pct), the other is 418 kJ/mol (Ni 43.21 at. pct, Ti 56.7g at. pct), which i5 lower than Ni-rich film. The Avrami parameter n of different films are 0.92 and 0.74 for Ni-rich film and Ti-rich films, respectively. The difference of kinetic parameters for NiTi films with various Ni contents implies that the crystallization behaviors of these films are distinct, which is confirmed by the calculated isothermal kinetics at different temperatures. The thorough research on this phenomenon is in progress.
基金supported by the National Key Project of Fundamental Research of China(Grant No.2012CB932304)the National Natural Science Foundation of China(Grant No.50831006)+1 种基金the Program for New Century Excellent Talents in University(Grant No.NCET-11-0156)the Priority Academic Program Development of Jiangsu Higher Education Institutions
文摘Ferromagnetic shape memory Ni-Mn-Ga films with 7M modulated structure were prepared on MgO (001) substrates by magnetron sputtering. Magnetization process with a typical two-hysteresis loop indicates the occurrence of the reversible magnetic field-induced reorientation. Magnetic domain structure and twin structure of the film were controlled by the in- terplay of the magnetic and temperature field. With cooling under an out-of-plane magnetic field, the evolution of magnetic domain structure reveals that martensitic transformation could be divided into two periods: nucleation and growth. With an in-plane magnetic field applied to a thermomagnetic-treated film, the evolution of magnetic domain structure gives evidence of a reorientation of twin variants of martensite. A microstructural model is described to define the twin structure and to produce the magnetic domain structure at the beginning of martensitic transformation; based on this model, the relationship between the twin structure and the magnetic domain structure for the treated film under an in-plane field is also described.
基金[This work was financially supported by the National High-technology Project of China (No. 2002AA325040), the National Natural Science foundation of China (No. 50325105, 50371040) and the Key Grant of Chinese Ministry of Education (No. 0303).]
文摘Al/Ni films were deposited on 128° Y-X LiNbO3 substrates by e-beam deposition. The influence of Ni underlayer on the microstructure, adhesion and resistivity of the Al/Ni films was investigated. It was found that Al films deposited on Ni underlayer thinner than 5 nm possessed strong texture. The textured Al/Ni films had a superior adhesion. Their resistivity decreased after annealing treatment at 200℃ for 30 min. With the textured Al/Ni films, a 2,30 GHz-range image-impedance connection SAW (Surface Acoustic Wave) filter was successfully fabricated.
文摘Composite nickel hydroxide films were prepared by cathodic co electrodeposition from metal nitrate solution and characterized by cyclic voltammetry in 1.0 mol/L KOH solution. The codeposited light rare earth elements were lanthanum, cerium, praseodymium and neodymium. The films were analyzed by spectrophotometry and optical transmission. The results of the cyclic voltammetry in 1.0 mol/L KOH solution showed that the current density for oxygen evolution at the film electrode was affected by the co deposited rare earth metal ions in the film. About 20 mA/cm 2 increase of current density for oxygen evolution was found when the film was obtained from the solution with cerium (7% v/v) and nickel (93% v/v) nitrate. The effects of galvanostatic cathodic current density for the film formation on the oxygen evolution at the film electrodes from the alkaline were discussed.
基金Project supported by the National Key Project of Fundamental Research of China (Grant No.2012CB932304)the National Natural Science Foundation of China (Grant No.50831006)the Priority Academic Program Development of Jiangsu Higher Education Institutions
文摘Ferromagnetic Ni-Mn-Ga films were fabricated by depositing on MgO (001) substrates at temperatures from 673 K to 923 K. Microstructure, crystal structure, martensitic transformation behavior, and magnetic properties of the films were studied. With increasing deposition temperature, the surface morphology of the films transforms from granular to continu- ous. The martensitic transformation temperature is not dependent on deposition temperature; while transformation behavior is affected substantially by deposition temperature. X-ray analysis reveals that the film deposited at 873 K has a 7M marten- site phase, and its magnetization curve provides a typical step-increase, indicating the occurrence of magnetically induced reorientation (MIR). In situ magnetic domain structure observation on the film deposited at 873 K reflects that the marten- sitic transformation could be divided into two periods: nucleation and growth, in the form of stripe domains. The MIR occurs at the temperature at which martensitic transformation starts, and the switching field increases with the decrease of temperature due to damped thermal activation. The magnetically induced martensitic transformation is related to the difference of magnetization between martensite and austenite. A shift of martensite temperature of dT/dH = 0.43 K/T is observed, consistent with the theoretical value, 0.41 K/T.
文摘Conductivities of Langmuir-Blodgett(LB) films of tetrabenzylthio- tetra-thiafulvalence-Ni(dmit)_2/stearic acid (SA)were described. This charge transfer complex was transferred with SA onto a glass plate coated with A1 electrodes. The relation of conductivities of LB films with molar ratio of SA was studied. The conductivities of LB films of TBT-TTF-Ni(dmit)_2/SA were measured under undoped and I_2 doped states. The maximum conductivity () of LB film was 40s/cm.
文摘Sputter-deposited Au/NisoFeso bilayer films were annealed in a vacuum of 5×10^-4 Pa at 523 to 723 K for 30 or 90 min. The characteristics of the bilayer films were determined by Auger electron spectroscopy, field emission scanning electron microscopy, X- ray diffractometry, a four-point probe technique, and an alternating gradient magnetometer. When the annealing temperature and time reached 723 K and 90 min, Ni and Fe atoms markedly diffused into the Au layer. The grain size of the Au layer did not change markedly with the annealing condition. As the annealing time was 30 min and the annealing temperature exceeded 573 K, the resistance of the bilayer film increased with increasing the annealing temperature. Furthermore, the resistance of the bilayer film annealed at 723 K for 90 ,nin was lower than that of the bilayer film annealed at 723 K for 30 min. All the bilayer films showed magnetic hysteresis loops. The as-deposited bilayer film showed a hard magnetization. The bilayer film represented an easy magnetization with increasing the annealing temperature. The Au/Ni50Fe50 film that annealed at 723 K for 90 min had the lowest saturation magnetization.
文摘The densification and the fractal dimensions of carbon-nickel films annealed at different temperatures 300, 500, 800, and 1000℃ with emphasis on porosity evaluation are investigated. For this purpose, the refractive index of films is determined from transmittance spectra. Three different regimes are identified, T 〈 500℃, 500℃ 〈 T 〈 800℃ and T 〉 800℃. The Rutherford baekscattering spectra show that with increasing the annealing temperature, the concentration of nickel atoms into films decreases. It is shown that the effect of annealing temperatures for increasing films densification at T 〈 500℃ and T 〉 800℃ is greater than the effect of nickel concentrations. It is observed that the effect of decreasing nickel atoms into films at 500℃ 〈 T 〈 800℃ strongly causes improving porosity and decreasing densification. The fractal dimensions of carbon-nickel films annealed from 300 to 500℃ are increased, while from 500 to 1000℃ these characteristics are decreased. It can be seen that at 800℃, films have maximum values of porosity and roughness.
文摘Chemical bath deposition technique has been used to deposit Ni-doped Sb2S3 thin films onto glass substrate. Doping was carried out by adding 1, 3 and 5 wt% of Ni. Bath temperature was kept as 10℃ and films were annealed at 250℃ under vacuum. Polycrystalline nature of films with an orthorhombic phase was analyzed by X-ray diffraction technique. Scanning electron microscopy was used for morphological study which shows that grains are spherical. Optical measurements using transmittance data indicated that films have a direct band gap of 1.00 - 2.60 eV with an absorption coefficient of ~104 cm<sup>-1</sup> in visible range. The average value of electrical conductivity was calculated as 1.66, 1.11 and 1.06 (Ω·cm)<sup>-1</sup> for as-deposited films and 1.90, 2.08 and 1.15 (Ω·cm)<sup>-1</sup> for annealed films while refractive indices were found as 2.18 - 3.38 and 1.91 - 3.74 respectively. The obtained films can be used for solar cell applications due to their good absorbing properties like higher absorption coefficient and refractive index values.
文摘Electrical properties of C/Ni films are studied using four mosaic targets made of pure graphite and stripes of nickel with the surface areas of 1.78,3.21,3.92 and 4.64%.The conductivity data in the temperature range of400-500 K shows the extended state conduction.The conductivity data in the temperature range of 150-300 K shows the multi-phonon hopping conduction.The Berthelot-type conduction dominates in the temperature range of 50-150 K.The conductivity of the films in the temperature range about 〈 50 K is described in terms of variable-range hopping conduction.In low temperatures,the localized density of state around Fermi level(F)for the film deposition with 3.92% nickel has a maximum value of about 56.2×10^(17)cm^(-3)eV^(-1) with the minimum average hopping distance of about 3.43 × 10^(-6) cm.
基金the National Natural Science Foundation of China (No. 90607021).
文摘Ni0.4Cu0.2Zn0.4Fe2O4 thin films were fabricated on Si substrates by using the sol-gel method and rapid thermal annealing (RTA), and their magnetic properties and crystalline structures were investigated. The samples calcined at and above 600 ℃ have a single-phase spinel structure and the average grain size of the sample calcined at 600 ℃ is about 20 nm. The initial permeability μi, saturation magnetization M and coercivity H of the samples increase with the increasing calcination temperature. The sample calcined at 600 ℃ exhibits an excellent soft magnetic performance, which has μi=33.97 (10 MHz), Hc=15.62 Oe and Ms=228.877 emu/cm^3. Low-temperature annealing can enhance the magnetic properties of the samples. The work shows that using the sol-gel method in conjunction with RTA is a promising way to fabricate integrated thin-film devices.
文摘The corrosion product films of two kinds of B30 tubes(similar to CDA 715)exposed to seawat- er for various periods of time were investigated by SEM,AES and XPS.The results show that the pro- tective corrosion product film is thin,uniform and adherent.FeOOH is found to be present in the film surface,which confirms the hypothesis that iron hydroxide segregates at the surface of the film.The FeOOH promotes Ni enrichment in the corrosion layer by preventing Ni from running off.The corro- sion product film with no protectiveness is of lay- ered structure,loose and bad adherence.The for- mer film is formed through direct oxidation and the latter by precipitation and redeposition from dis- solved species.
基金financially supported by the Science Foundation of Guangdong Province (No. 011215)
文摘The elexctrochemical properties of Dy (III), Ni(II) + Ni(II) indimethylformamide were studied by cyclic voltammetry on Pt or Cuelectrode. Black, metallic lustered, compact and well adhesive Dy-Nialloy films can be co-deposited on Cu electrode bysweeping-potential-deposition method within some potentials. SEM,EDAX and XRD were used to analyze the alloy films. The Dy content inthe Dy-Ni alloy film is up to 56.91/100 (mass fraction) and the Dy-Ni alloy films are amorphous.
基金supported by Science&Technology Commission of Shanghai Municipality(STCSM),China(No.02DJ14042)the Key Project of Chinese Ministry of Education(No.0307).
文摘Microstructure and phase transformation behaviors of the film annealed at different temperatures were studied by X-ray diffractometry (XRD), transmission electron microscopy and differential scanning calorimeter (DSC). Also tensile tests were examined. For increasing annealed temperature, multiple phase transformations, transformations via a B19-phase or direct martensite/austenite transformtion are observed. The TiNiPd thin film annealed at 750℃ had relatively uniform martensite/austenite transformtion and shape memory effect. Martensite/austenite transformtion was also found in strain-temperature curves. Subsequent annealing at 450℃ had minor effect on transformation temperatures of Ti-Ni-Pd thin films but resulted in more uniform transformation and improved shape memory effect.
文摘A study was conducted to develop low-friction, wear-resistant surfaces on high temperature alloys for the temperature range from 26℃ to 900℃. The approach investigated consists of modifying the naturally occurring oxide film in order to improve its tribological properties. Improvement is needed at low temperatures where the oxide film, previously formed at high temperature, spalls due to stresses induced by sliding. Experiments with Ti, W and Ta additions show a beneficial effect when added to Ni and Ni-base alloys. Low friction can be maintained down to 100℃ from 900℃. For unalloyed Ni friction and surface damage increases at 400℃ to 500℃. Two new alloys were perpared based on the beneficial results of binary alloys and ZrO2 diffusion in Ni.Low friction at temperature above 500℃ and reasonable values (0.32~0.42) at low temperature are obtained.
文摘The cyclic voltammetry and chronoamperometry were used to investigate the electrochemical behaviors of Er(Ⅲ) and Ni(Ⅱ) in LiClO 4 DMSO(dimethylsufoxide) system on Pt and Cu electrodes. Experimental results indicated that the reduction of Er(Ⅲ) to Er and Ni(Ⅱ) to Ni were irreversible in one step on Pt and Cu electrodes. The diffusion coefficient and electron transfer coefficient of Er(Ⅲ) in 0.01 mol·L -1 ErCl 3 -0.1 mol·L -1 LiClO 4 DMSO system at 303K were 1.47×10 -10 m 2·s -1 and 0.108 respectively, and the diffusion coefficient and electron transfer coefficient of Ni(Ⅱ) in 0.01 mol·L -1 NiCl 2-0.1 mol·L -1 LiClO 4 DMSO system at 303K were 3.38×10 -10 m 2·s -1 and 0.160 respectively. The homogeneous, strong adhesive Er Ni alloy films with metallic lu- stre was prepared by potentiostatic electrolysis on Cu electrode in ErCl 3 NiCl 2 LiClO 4 DMSO system at -1.90~ -2.55 V (vs SCE).