Exploring a novel strategy for large-scale production of battery-type Ni(OH)_(2)-based composites,with excellent capacitive performance,is still greatly challenging.Herein,we developed a facile and cost-effective stra...Exploring a novel strategy for large-scale production of battery-type Ni(OH)_(2)-based composites,with excellent capacitive performance,is still greatly challenging.Herein,we developed a facile and cost-effective strategy to in situ grow a layer of Ni(OH)_(2)/Ti_(3)C_(2)T_(x)composite on the nickel foam(NF)collector,where Ti_(3)C_(2)T_(x)is not only a conductive component,but also a catalyst that accelerates the oxidation of NF to Ni(OH)_(2).Detailed analysis reveals that the crystallinity,morphology,and electronic structure of the integrated electrode can be tuned via the electrochemical activation,which is beneficial for improving electrical conductivity and redox activity.As expected,the integrated electrode shows a specific capacity of 1.09 C cm^(-2)at 1 mA cm^(-2)after three custom activation cycles and maintains 92.4%of the initial capacity after 1500 cycles.Moreover,a hybrid supercapacitor composed of Ni(OH)_(2)/Ti_(3)C_(2)T_(x)/NF cathode and activated carbon anode provides an energy density of 0.1 mWh cm^(-2)at a power density of 0.97 mW cm^(-2),and excellent cycling stability with about 110%capacity retention rate after 5000 cycles.This work would afford an economical and convenient method to steer commercial Ni foam into advanced Ni(OH)_(2)-based composite materials as binder-free electrodes for hybrid supercapacitors.展开更多
Both whisker and nanometer MgSO4·5Mg(OH)2·3H2O(MOS) were prepared by hydrothermal method at 140℃for different times, using NaOH and MgSO4·7H2O as raw materials. The MgSO4·5Mg(OH)2·3H2O part i...Both whisker and nanometer MgSO4·5Mg(OH)2·3H2O(MOS) were prepared by hydrothermal method at 140℃for different times, using NaOH and MgSO4·7H2O as raw materials. The MgSO4·5Mg(OH)2·3H2O part icles were characterized by powder X ray diffraction(XRD),thermal analysis(TGA DSC), infrared spectroscopy(FT IR),transmission electron microscopy(SEM) and scanning electron microscopy(TEM). The size distribution in whisker like and nanocrystalline materials arein the range of 10~50μm and 10~20nm respectively. The whisker MOS is metastable phase in MgSO4 NaOH H2O system at 140℃,whereas nanometer MOS is stable phase.展开更多
基金supported by the NSF of China(Nos.21971143,21805165,22209098)the 111 Project(D20015)+1 种基金the major research and development project of Hubei Three Gorges Laboratory(2022-3)the Natural Science Foundation of Hubei Province(2022CFB326)
文摘Exploring a novel strategy for large-scale production of battery-type Ni(OH)_(2)-based composites,with excellent capacitive performance,is still greatly challenging.Herein,we developed a facile and cost-effective strategy to in situ grow a layer of Ni(OH)_(2)/Ti_(3)C_(2)T_(x)composite on the nickel foam(NF)collector,where Ti_(3)C_(2)T_(x)is not only a conductive component,but also a catalyst that accelerates the oxidation of NF to Ni(OH)_(2).Detailed analysis reveals that the crystallinity,morphology,and electronic structure of the integrated electrode can be tuned via the electrochemical activation,which is beneficial for improving electrical conductivity and redox activity.As expected,the integrated electrode shows a specific capacity of 1.09 C cm^(-2)at 1 mA cm^(-2)after three custom activation cycles and maintains 92.4%of the initial capacity after 1500 cycles.Moreover,a hybrid supercapacitor composed of Ni(OH)_(2)/Ti_(3)C_(2)T_(x)/NF cathode and activated carbon anode provides an energy density of 0.1 mWh cm^(-2)at a power density of 0.97 mW cm^(-2),and excellent cycling stability with about 110%capacity retention rate after 5000 cycles.This work would afford an economical and convenient method to steer commercial Ni foam into advanced Ni(OH)_(2)-based composite materials as binder-free electrodes for hybrid supercapacitors.
文摘Both whisker and nanometer MgSO4·5Mg(OH)2·3H2O(MOS) were prepared by hydrothermal method at 140℃for different times, using NaOH and MgSO4·7H2O as raw materials. The MgSO4·5Mg(OH)2·3H2O part icles were characterized by powder X ray diffraction(XRD),thermal analysis(TGA DSC), infrared spectroscopy(FT IR),transmission electron microscopy(SEM) and scanning electron microscopy(TEM). The size distribution in whisker like and nanocrystalline materials arein the range of 10~50μm and 10~20nm respectively. The whisker MOS is metastable phase in MgSO4 NaOH H2O system at 140℃,whereas nanometer MOS is stable phase.