The Co-Cr-W ternary system was critically assessed using the CALPHAD technique.The solution phases including the liquid,γ-Co,ε-Co and α-Cr were described by a substitutional solution model.The σ,μ and R phases we...The Co-Cr-W ternary system was critically assessed using the CALPHAD technique.The solution phases including the liquid,γ-Co,ε-Co and α-Cr were described by a substitutional solution model.The σ,μ and R phases were described by three-sublattice models of(Co,W)8(Cr,W)4(Co,Cr,W)18,(Co,Cr,W)7W2(Co,Cr,W)4 and(Co,W)27(Cr,W)14(Co,Cr,W)12,respectively,in order to reproduce their homogeneity ranges.A self-consistent set of thermodynamic parameters for each phase was derived.The calculated isothermal sections at 1 000,1 200 and 1 350 ℃ are in good agreement with the experimental data.A eutectoid reaction of R μ+γ-Co+σ in this ternary system was predicted to occur at 1 022 ℃.展开更多
Metastable liquid phase separation and rapid solidification in a metastable miscibility gap were investigated on the Cu60Co30Cr10 alloy by using the electromagnetic levitation and splat-quenching.It is found that the ...Metastable liquid phase separation and rapid solidification in a metastable miscibility gap were investigated on the Cu60Co30Cr10 alloy by using the electromagnetic levitation and splat-quenching.It is found that the alloy generally has a microstructure consisting of a(Co,Cr)-rich phase embedded in a Cu-rich matrix,and the morphology and size of the(Co,Cr)-rich phase vary drastically with cooling rate.During the electromagnetic levitation solidification processing the cooling rate is lower,resulting in an obvious coalescence tendency of the(Co,Cr)-rich spheroids.The(Co,Cr)-rich phase shows dendrites and coarse spheroids at lower cooling rates.In the splat quenched samples the(Co,Cr)-rich phase spheres were refined significantly and no dendrites were observed.This is probably due to the higher cooling rate,undercooling and interface tension.展开更多
Fe-Cr-Mo-Ni-C-Co alloy was quenched in liquid nitrogen and held for 24 h.Hardness tester,OM,XRD,SEM were used to investigate the mechanical properties and microstructures of the alloy.The results show that the hardnes...Fe-Cr-Mo-Ni-C-Co alloy was quenched in liquid nitrogen and held for 24 h.Hardness tester,OM,XRD,SEM were used to investigate the mechanical properties and microstructures of the alloy.The results show that the hardness increases by 1-2(HRC)and the compressive strength decreases slightly after cryogenic treatment.The increase in hardness is attributed to the transformation from austenite to martensite and the precipitation of the very tiny carbideη-Fe2C.The decrease in compressive strength is caused by residual stress.The great amount of carbides,such as Cr7C3 and Fe2MoC,in the alloy and the obvious difference in thermal expansion coefficient between these carbides and the matrix at the cryogenic temperatures lead to this residual stress.The microscopy of cryogenic martensite is different from that of the non-cryogenic martensite.The cryogenic martensite is long and fine;while the non-cryogenic martensite is short and coarse.There is obvious surface relief of the cryogenic martensite transformation.It is not orientational of this kind surface relief and the boundary of this surface relief is smooth and in a shape of butterfly.The surface relief in the non-cryogenic martensite is wide and arranged in parallel,and the boundary of surface relief is not smooth.These characteristics may imply different growth ways of the two kinds of martensite.展开更多
基金Project(50771027)supported by the National Basic Research Program of ChinaProject(50771027)supported by the National Natural Science Foundation of China
文摘The Co-Cr-W ternary system was critically assessed using the CALPHAD technique.The solution phases including the liquid,γ-Co,ε-Co and α-Cr were described by a substitutional solution model.The σ,μ and R phases were described by three-sublattice models of(Co,W)8(Cr,W)4(Co,Cr,W)18,(Co,Cr,W)7W2(Co,Cr,W)4 and(Co,W)27(Cr,W)14(Co,Cr,W)12,respectively,in order to reproduce their homogeneity ranges.A self-consistent set of thermodynamic parameters for each phase was derived.The calculated isothermal sections at 1 000,1 200 and 1 350 ℃ are in good agreement with the experimental data.A eutectoid reaction of R μ+γ-Co+σ in this ternary system was predicted to occur at 1 022 ℃.
基金Projects(51171152,50871088) supported by the National Natural Science Foundation of ChinaProject(20126102110048) supported by Doctoral Fund of Ministry of Education of China+2 种基金Project(SKLSP201202) supported by Foundation of State Key Laboratory of Solidification,ChinaProject(2012JC2-02) supported by Natural Science Basic Research Plan in Shaanxi Province,ChinaProject (JC201268) supported by the NPU Foundation for Fundamental Research,China
文摘Metastable liquid phase separation and rapid solidification in a metastable miscibility gap were investigated on the Cu60Co30Cr10 alloy by using the electromagnetic levitation and splat-quenching.It is found that the alloy generally has a microstructure consisting of a(Co,Cr)-rich phase embedded in a Cu-rich matrix,and the morphology and size of the(Co,Cr)-rich phase vary drastically with cooling rate.During the electromagnetic levitation solidification processing the cooling rate is lower,resulting in an obvious coalescence tendency of the(Co,Cr)-rich spheroids.The(Co,Cr)-rich phase shows dendrites and coarse spheroids at lower cooling rates.In the splat quenched samples the(Co,Cr)-rich phase spheres were refined significantly and no dendrites were observed.This is probably due to the higher cooling rate,undercooling and interface tension.
文摘Fe-Cr-Mo-Ni-C-Co alloy was quenched in liquid nitrogen and held for 24 h.Hardness tester,OM,XRD,SEM were used to investigate the mechanical properties and microstructures of the alloy.The results show that the hardness increases by 1-2(HRC)and the compressive strength decreases slightly after cryogenic treatment.The increase in hardness is attributed to the transformation from austenite to martensite and the precipitation of the very tiny carbideη-Fe2C.The decrease in compressive strength is caused by residual stress.The great amount of carbides,such as Cr7C3 and Fe2MoC,in the alloy and the obvious difference in thermal expansion coefficient between these carbides and the matrix at the cryogenic temperatures lead to this residual stress.The microscopy of cryogenic martensite is different from that of the non-cryogenic martensite.The cryogenic martensite is long and fine;while the non-cryogenic martensite is short and coarse.There is obvious surface relief of the cryogenic martensite transformation.It is not orientational of this kind surface relief and the boundary of this surface relief is smooth and in a shape of butterfly.The surface relief in the non-cryogenic martensite is wide and arranged in parallel,and the boundary of surface relief is not smooth.These characteristics may imply different growth ways of the two kinds of martensite.