The composite oxides xAg/Co_(0.93)Ce_(0.07)(x=Ag/(Co+Ce) molar ratio),intended for use as high performance catalytic materials,were successfully prepared via citric acid complexation.The effects of silver on ...The composite oxides xAg/Co_(0.93)Ce_(0.07)(x=Ag/(Co+Ce) molar ratio),intended for use as high performance catalytic materials,were successfully prepared via citric acid complexation.The effects of silver on the performance of these substances during soot combustion were subsequently investigated.Under O_2,the 0.3Ag/Co_(0.93)Ce_(0.07) catalyst resulted in the lowest ignition temperature,T_(10),of197 ℃,while the minimum light-off temperature was obtained from both 0.2Ag/Co_(0.93)Ce_(0.07) and0.3Ag/Co_(0.93)Ce_(0.07) in the NO_x atmosphere.These materials were also characterized by various techniques,including H_2,soot and NO_x temperature programmed reduction,X-ray diffraction,and electron paramagnetic resonance,Raman,X-ray photoelectron,and Fourier transform infrared spectroscopic analyses.The results demonstrated that silver significantly alters the catalytic behavior under both O_2 and NO_x,even though the lattice structure of the mixed oxide is not affected.Surface silver oxides generated under the O_2 atmosphere favor soot combustion by participating in the redox cycles between soot and the silver oxide,whereas the AgNO_3 that forms in a NO_x-rich atmosphere facilitates soot abatement at a lower temperature.The inferior activity of AgNO_3 relative to that of Ag_2O results in the different catalytic performance in the presence of NO_x or O_2.展开更多
The process of electroplating Co-Ce alloys on the nickel foam framework surface can improve electro-conductivity for active materials and nickel substrate interface. The results of inductive coupled plasma emission sp...The process of electroplating Co-Ce alloys on the nickel foam framework surface can improve electro-conductivity for active materials and nickel substrate interface. The results of inductive coupled plasma emission spectrometer (ICP), cyclic voltammetry (CV), scanning electron microscopy (SEM), X-ray diffraction (XRD) and electron probe microanalysis (EPMA) indicate that the Co-Ce coating chemical content of rare earth Ce 0.19wt.%-0.28wt.% can not only alter the microstructure of electroplating coating, but also accelerate the oxidation reaction of Co and improve its transfer rate of electric current conductivity to the active material particles. The grads-like distributing electro-conductive network of CoOOH is formed on the nickel substrate surface, which improves reversibility of pasted nickel electrode. The charging receptivity is improved by Co-Ce coating on the pasted nickel electrode substrate, and its specific discharging capacity is improved by 50%.展开更多
MH/Ni battery for electro-vehicle has become a hot topic of studies. The Co-Ce alloys were electrodeposited on the nickel substrate to modify pasted nickel electrode substrate. SEM and XRD results show that the surfac...MH/Ni battery for electro-vehicle has become a hot topic of studies. The Co-Ce alloys were electrodeposited on the nickel substrate to modify pasted nickel electrode substrate. SEM and XRD results show that the surface of the substrate contains Co(OH)2 and CoOOH film, and CV shows that modified film can improve electron conductivity capability. The state of charge (SOC) or state of discharge (SOD) curves indicate that Co-Ce modified substrate can enhance Ni electrode charge and discharge performance at high rate. The surface analysis by XPS shows that, the Co(Ⅱ)/Co(Ⅲ) ratio is 76.80/23.19 at the SOD, but the Co(Ⅱ)/Co(Ⅲ) ratio is 57.79/42.21 at the SOC, which indicates that the conductibility of electrodeposited Co-Ce alloys on the nickel substrate is enhanced because CoOOH and Co(OH)2 are created on the substrate surface. The modified surface with CoOOH and Co(OH)2 can enhance the conductibility of electrons between the substrate and active materials, and improve the high rate SOC and SOD ability.展开更多
The liquid phase selective hydrogenation of cinnamaldehyde has been investigated over the catalysts Co-C-T(T=400-700℃),which were derived from the carbonization of the MOF precursor Co-BTC at different temperatures i...The liquid phase selective hydrogenation of cinnamaldehyde has been investigated over the catalysts Co-C-T(T=400-700℃),which were derived from the carbonization of the MOF precursor Co-BTC at different temperatures in inert atmosphere.Co-C-500 exhibited a higher conversion(85.3%)than those carbonized at other temperatures,with 51.5%selectivity to cinnamyl alcohol,under a mild condition(90℃,4 h,2 MPa H_(2),solvent:9 ml ethanol and 1 ml water).The high catalytic activity of Co-C-500 can be ascribed to the large specific surface area of the catalyst,the uniformly dispersed metallic cobalt nanoparticles,and the more defect sites on the carbon support.Moreover,Co-C-500 showed excellent reusability in 5 successive cycles,mainly related to the uniformly dispersed cobalt nanoparticles embedded in carbon support.展开更多
By using photoacoustic calorimetry, a photoacoustic measurement system is applied to determine the Co-C bond dissociation energy of n C4H9Co(Salen)H2O, which is 116±8kJ·mol-1. This value is in agreement with...By using photoacoustic calorimetry, a photoacoustic measurement system is applied to determine the Co-C bond dissociation energy of n C4H9Co(Salen)H2O, which is 116±8kJ·mol-1. This value is in agreement with the activation enthalpy of the Co-C bond homolytic cleavage reaction that obtained by the kinetic method.展开更多
根据国际温度咨询委员会辐射测温工作组(CCT-WG5)对世界各国计量机构开展Co-C共晶点研制工作的相关要求,设计并搭建了Co-C共晶点灌注系统,采用直接共晶法成功灌注了满足复现实验要求的Co-C共晶点坩埚。针对直接共晶灌注法效率低、坩埚...根据国际温度咨询委员会辐射测温工作组(CCT-WG5)对世界各国计量机构开展Co-C共晶点研制工作的相关要求,设计并搭建了Co-C共晶点灌注系统,采用直接共晶法成功灌注了满足复现实验要求的Co-C共晶点坩埚。针对直接共晶灌注法效率低、坩埚破裂风险大的缺陷,提出了对灌注方法的改进方案,并依据该方案成功灌注了2个Co-C共晶点坩埚。对灌注的Co-C-2#共晶点进行了复现试验,结果显示:拐点温度的不确定度为5. 3 m K,满足小于10 m K的CCT要求;短期重复性为9. 6 m K,满足小于20 m K的CCT要求。展开更多
基金supported by the National Natural Science Foundation of China(21577088)~~
文摘The composite oxides xAg/Co_(0.93)Ce_(0.07)(x=Ag/(Co+Ce) molar ratio),intended for use as high performance catalytic materials,were successfully prepared via citric acid complexation.The effects of silver on the performance of these substances during soot combustion were subsequently investigated.Under O_2,the 0.3Ag/Co_(0.93)Ce_(0.07) catalyst resulted in the lowest ignition temperature,T_(10),of197 ℃,while the minimum light-off temperature was obtained from both 0.2Ag/Co_(0.93)Ce_(0.07) and0.3Ag/Co_(0.93)Ce_(0.07) in the NO_x atmosphere.These materials were also characterized by various techniques,including H_2,soot and NO_x temperature programmed reduction,X-ray diffraction,and electron paramagnetic resonance,Raman,X-ray photoelectron,and Fourier transform infrared spectroscopic analyses.The results demonstrated that silver significantly alters the catalytic behavior under both O_2 and NO_x,even though the lattice structure of the mixed oxide is not affected.Surface silver oxides generated under the O_2 atmosphere favor soot combustion by participating in the redox cycles between soot and the silver oxide,whereas the AgNO_3 that forms in a NO_x-rich atmosphere facilitates soot abatement at a lower temperature.The inferior activity of AgNO_3 relative to that of Ag_2O results in the different catalytic performance in the presence of NO_x or O_2.
文摘The process of electroplating Co-Ce alloys on the nickel foam framework surface can improve electro-conductivity for active materials and nickel substrate interface. The results of inductive coupled plasma emission spectrometer (ICP), cyclic voltammetry (CV), scanning electron microscopy (SEM), X-ray diffraction (XRD) and electron probe microanalysis (EPMA) indicate that the Co-Ce coating chemical content of rare earth Ce 0.19wt.%-0.28wt.% can not only alter the microstructure of electroplating coating, but also accelerate the oxidation reaction of Co and improve its transfer rate of electric current conductivity to the active material particles. The grads-like distributing electro-conductive network of CoOOH is formed on the nickel substrate surface, which improves reversibility of pasted nickel electrode. The charging receptivity is improved by Co-Ce coating on the pasted nickel electrode substrate, and its specific discharging capacity is improved by 50%.
文摘MH/Ni battery for electro-vehicle has become a hot topic of studies. The Co-Ce alloys were electrodeposited on the nickel substrate to modify pasted nickel electrode substrate. SEM and XRD results show that the surface of the substrate contains Co(OH)2 and CoOOH film, and CV shows that modified film can improve electron conductivity capability. The state of charge (SOC) or state of discharge (SOD) curves indicate that Co-Ce modified substrate can enhance Ni electrode charge and discharge performance at high rate. The surface analysis by XPS shows that, the Co(Ⅱ)/Co(Ⅲ) ratio is 76.80/23.19 at the SOD, but the Co(Ⅱ)/Co(Ⅲ) ratio is 57.79/42.21 at the SOC, which indicates that the conductibility of electrodeposited Co-Ce alloys on the nickel substrate is enhanced because CoOOH and Co(OH)2 are created on the substrate surface. The modified surface with CoOOH and Co(OH)2 can enhance the conductibility of electrons between the substrate and active materials, and improve the high rate SOC and SOD ability.
基金financial support from the National Natural Science Foundation of China(22272016).
文摘The liquid phase selective hydrogenation of cinnamaldehyde has been investigated over the catalysts Co-C-T(T=400-700℃),which were derived from the carbonization of the MOF precursor Co-BTC at different temperatures in inert atmosphere.Co-C-500 exhibited a higher conversion(85.3%)than those carbonized at other temperatures,with 51.5%selectivity to cinnamyl alcohol,under a mild condition(90℃,4 h,2 MPa H_(2),solvent:9 ml ethanol and 1 ml water).The high catalytic activity of Co-C-500 can be ascribed to the large specific surface area of the catalyst,the uniformly dispersed metallic cobalt nanoparticles,and the more defect sites on the carbon support.Moreover,Co-C-500 showed excellent reusability in 5 successive cycles,mainly related to the uniformly dispersed cobalt nanoparticles embedded in carbon support.
文摘By using photoacoustic calorimetry, a photoacoustic measurement system is applied to determine the Co-C bond dissociation energy of n C4H9Co(Salen)H2O, which is 116±8kJ·mol-1. This value is in agreement with the activation enthalpy of the Co-C bond homolytic cleavage reaction that obtained by the kinetic method.
文摘根据国际温度咨询委员会辐射测温工作组(CCT-WG5)对世界各国计量机构开展Co-C共晶点研制工作的相关要求,设计并搭建了Co-C共晶点灌注系统,采用直接共晶法成功灌注了满足复现实验要求的Co-C共晶点坩埚。针对直接共晶灌注法效率低、坩埚破裂风险大的缺陷,提出了对灌注方法的改进方案,并依据该方案成功灌注了2个Co-C共晶点坩埚。对灌注的Co-C-2#共晶点进行了复现试验,结果显示:拐点温度的不确定度为5. 3 m K,满足小于10 m K的CCT要求;短期重复性为9. 6 m K,满足小于20 m K的CCT要求。