A behavioral model of the photodiode is presented.The model describes the relationship between photocurrent and incident optical power,and it also illustrates the impact of the reverse bias to the variation of the jun...A behavioral model of the photodiode is presented.The model describes the relationship between photocurrent and incident optical power,and it also illustrates the impact of the reverse bias to the variation of the junction capacitance.According to this model,the photodiode and a CMOS receiver circuit are simulated and designed simultaneously under a universal circuit simulation environment.展开更多
With the development of Ethernet systems and the growing capacity of modem silicon technology, embedded communication networks are playing an increasingly important role in embedded and safety critical systems. Hardwa...With the development of Ethernet systems and the growing capacity of modem silicon technology, embedded communication networks are playing an increasingly important role in embedded and safety critical systems. Hardware/software co-design is a methodology for solving design problems in processor based embedded systems. In this work, we implemented a new 1-cycle pipeline microprocessor and a fast Ethemet transceiver and established a low cost, high performance embedded network controller, and designed a TCP/IP stack to access the Intemet. We discussed the hardware/software architecture in the forepart, and then the whole system-on-a-chip on Altera Stratix EP1S25F780C6 device. Using the FPGA environment and SmartBit tester, we tested the system's throughput. Our simulation results showed that the maximum throughput of Ethemet packets is up to 7 Mbps, that of UDP packets is up to 5.8 Mbps, and that of TCP packets is up to 3.4 Mbps, which showed that this embedded system can easily transmit basic voice and video signals through Ethemet, and that using only one chip can realize that many electronic devices access to the Intemet directly and get high performance.展开更多
A co-design scheme of event-triggered sampling mechanism and active fault tolerant control(FTC) is developed. Firstly,a fault diagnosis observer is designed to estimate both the fault and the state simultaneously by u...A co-design scheme of event-triggered sampling mechanism and active fault tolerant control(FTC) is developed. Firstly,a fault diagnosis observer is designed to estimate both the fault and the state simultaneously by using the event-triggered sampled output. Some H∞constraints between the estimation errors and the event-triggered sampling mechanism are established to ensure the estimation accuracy. Then, based on the constraints and the obtained fault information, an event-triggered detector and a static fault tolerant controller are co-designed to guarantee the stability of the faulty system and to reduce the sensor communication cost.Furthermore, the problem of the event detector and dynamic FTC co-design is also investigated. Simulation results of an unstable batch reactor are finally provided to illustrate the effectiveness of the proposed method.展开更多
In this paper,the Web-based integration methodology and framework have been developed to facilitate collabora- tive and concurrent engineering design in distributed manufacturing environments.The distributed concurren...In this paper,the Web-based integration methodology and framework have been developed to facilitate collabora- tive and concurrent engineering design in distributed manufacturing environments.The distributed concurrent engineering and co- design are discussed as key components in the mechanism.The related integration system is presented,which includes four function- al modules:co-design,Web-based visualization,manufacturing analysis and look-up service.It can be used for a design team geo- graphically distributed to organize a collaborative and concurrent engineering design effectively.In particular,the collaborative mechanism incorporated with Java-based and Internet-enabled technologies can generate extended strategies for design and planning. Thus,the proposed integration architecture enables the system to be generic,open and scalable.Finally,for the trend of global manufacturing,a case study of Internet-enabled collaborative optimization is introduced and a discussion on teamwork capability is made.展开更多
The basic theory of the sequential load-modulated balanced amplifier(SLMBA)is introduced and the working principle of its active load modulation is analyzed in this paper.In order to further improve the performance of...The basic theory of the sequential load-modulated balanced amplifier(SLMBA)is introduced and the working principle of its active load modulation is analyzed in this paper.In order to further improve the performance of the SLMBA,a codesigned method of the coupler and power amplifier(PA)is proposed,which is different from the traditional design of couplers.According to the back-off point and saturation point of the SLMBA,this coupler-PA codesign approach can make the working state of the coupler and three-way PA closer to the actual situation,which improves the overall performance of the SLMBA.The maximum output power ratio of the control PA and the balance PA is then determined by the preset output power back-off(OBO)of 10 dB,and the phase compensation line is determined by the trace of the load modulation impedance of the balanced PA.In order to verify the proposed method,an SLMBA operating at 1.5–2.7 GHz(57%relative bandwidth)is designed.The layout simulation results show that its saturated output powers achieve 40.7–43.7 dBm and the small signal gains are 9.7–12.4 dB.Besides,the drain efficiencies at the saturated point and 10 dB OBO point are 52.7%–73.7%and 44.9%–59.2%respectively.展开更多
This article presents the scenario of programming use by architects and engineers,creating their own unique tools.The goal is to emulate and understand the phenomenon of Building Information Modeling(BIM)software cust...This article presents the scenario of programming use by architects and engineers,creating their own unique tools.The goal is to emulate and understand the phenomenon of Building Information Modeling(BIM)software customization by developing plug-ins that can explore the human-environment relationship.Demonstrate the process for building a plugin that seeks to equalize the theory of accessibility technical standards,visually impaired and architects.Use Design Science Research methodologies to guide the construction of artifacts for specific practical problems and the Collaborative Design/Co-design to understand and know the users’expertise.It is argued that the low quality of projects that include elements for the orientation of the visually impaired in Brazil is often related to an unstructured methodology in which important aspects such as the real needs of this group and the human-environment relationship are neglected.展开更多
Energy harvesting(EH)technology is developed with the purpose of harnessing ambient energy in different physical forms.Although the available ambient energy is usually tiny,not comparable to the centralized power gene...Energy harvesting(EH)technology is developed with the purpose of harnessing ambient energy in different physical forms.Although the available ambient energy is usually tiny,not comparable to the centralized power generation,it brings out the convenience of onsite power generation by drawing energy from local sources,which meets the emerging pow⁃er demand of long-lasting,extensively-deployed,and maintenance-free Internet of Things(IoT).Kinetic energy harvesting(KEH)is one of the most promising EH solutions toward the realization of battery-free IoT.The KEH-based battery-free IoT can be extensively deployed in the smart home,smart building,and smart city scenarios,enabling perceptivity,intelli⁃gence,and connectivity in many infrastructures.This paper gives a brief introduction to the configurations and basic principles of practical KEH-IoT systems,including their mechani⁃cal,electrical,and computing parts.Although there are already a few commercial products in some specific application markets,the understanding and practice in the co-design and optimization of a single KEH-IoT device are far from mature,let alone the conceived multia⁃gent energy-autonomous intelligent systems.Future research and development of the KEHIoT system beckons for more exchange and collaboration among mechanical,electrical,and computer engineers toward general design guidelines to cope with these interdisciplinary en⁃gineering problems.展开更多
Human detection is important in many applications and has attracted significant attention over the last decade. The Histograms of Oriented Gradients (HOG) as effective local descriptors are used with binary sliding wi...Human detection is important in many applications and has attracted significant attention over the last decade. The Histograms of Oriented Gradients (HOG) as effective local descriptors are used with binary sliding window mechanism to achieve good detection performance. However, the computation of HOG under such framework is about billion times and the pure software implementation for HOG computation is hard to meet the real-time requirement. This study proposes a hardware architecture called One-HOG accelerator operated on FPGA of Xilinx Spartan-6 LX-150T that provides an efficient way to compute HOG such that an embedded real-time platform of HW/SW co-design for application to crowd estimation and analysis is achieved. The One-HOG accelerator mainly consists of gradient module and histogram module. The gradient module is for computing gradient magnitude and orientation;histogram module is for generating a 36-D HOG feature vector. In addition to hardware realization, a new method called Histograms-of-Oriented-Gradients AdaBoost Long-Feature-Vector (HOG-AdaBoost-LFV) human classifier is proposed to significantly decrease the number of times to compute the HOG without sacrificing detection performance. The experiment results from three static image and four video datasets demonstrate that the proposed SW/HW (software/hardware) co-design system is 13.14 times faster than the pure software computation of Dalal algorithm.展开更多
This research is focused on internet shoppers co-design, individual tendency of trust, trust belief, and purchase intention. An online questionnaire was set out in survey form on Google Docs in or-der to collect data....This research is focused on internet shoppers co-design, individual tendency of trust, trust belief, and purchase intention. An online questionnaire was set out in survey form on Google Docs in or-der to collect data. The survey was conducted of participants in Mongolia. 236 usable responses were obtained from Mongolian potential customers in order to examine constructs. The findings suggest that co-design and individual tendency of trust have significant positive effect on the trust levels throughout intention to purchase.展开更多
The active participation of users in the Design Process(DP)in architecture is a collective action,which aims to meet their real needs.In terms of open spaces for children,squares and playgrounds become leisure spaces ...The active participation of users in the Design Process(DP)in architecture is a collective action,which aims to meet their real needs.In terms of open spaces for children,squares and playgrounds become leisure spaces known for being places of coexistence,interaction and entertainment.However,the vast majority of children’s environments are planned and organized considering the perceptions and experiences of adults.Children become absent from the process of building the contemporary city.Co-design is an important tool for adding users to DP.The objective of this work is,therefore,to include children in the DP of a Pocket Park,using methods and tools to support co-design.The work was structured based on bibliographic review,Focus Group,Culture Maker and Digital Fabrication.The research indicated that the collaborative project promotes assertive communication between children and designers,welcoming their ideas and perceptions in a flexible way.展开更多
As a result of the growing complexity of industrial Internet applications,traditional hardware-based network designs are encountering challenges in terms of programmability and dynamic adaptability as they struggle to...As a result of the growing complexity of industrial Internet applications,traditional hardware-based network designs are encountering challenges in terms of programmability and dynamic adaptability as they struggle to meet the real-time,high-reliability transmission requirements for the vast quantities of data generated in industrial environments.This paper proposes a holistic software-defined deterministic network(HSDDN)design solution.This solution uses a centralized controller to implement a comprehensive software definition,ranging from the network layer down to the physical layer.Within the wireless access domain,we decouple the standard radio-frequency modules from baseband processing to realize a software-defined physical layer,which then allows us to adjust the data transmission cycles and tag the trigger rates to meet demand for low-power,high-concurrency transmission.Within the wired network domain,we integrate software-defined networking with time-sensitive networking and propose a coordinated design strategy to address routing and the deterministic scheduling problem.We define a set of constraints to ensure collaborative transmission of the periodic and aperiodic data flows.To guarantee load balancing across all paths and timeslots,we introduce the Jain’s fairness index as the optimization objective and then construct a nondeterministic polynomial-time(NP)-hard joint optimization problem.Furthermore,an algorithm called Tabu search for routing and scheduling with dual-stages(TSRS-DS)is proposed.Simulation experiments demonstrate the effectiveness of the proposed HSDDN architecture.展开更多
A 4×112 Gb/s hybrid-integrated optical receiver is demonstrated based on the silicon-photonic vertical p-i-n photodetector and silicon–germanium transimpedance amplifier.We propose a photonic-electronic co-desig...A 4×112 Gb/s hybrid-integrated optical receiver is demonstrated based on the silicon-photonic vertical p-i-n photodetector and silicon–germanium transimpedance amplifier.We propose a photonic-electronic co-design technique to optimize both the device-level and system-level performance,based on the end-to-end equivalent circuit model of the receiver.Continuous-time linear equalization and shunt peaking are employed to enhance the frequency response.Experimental results reveal that the optical-to-electrical 3-dB bandwidth of the receiver is 48 GHz.Clear open NRZ eye diagrams at56 Gb/s and PAM-4 eye diagrams at 112 Gb/s are achieved without an equalizer in the oscilloscope.The measured bit error rates for 56 Gb/s in NRZ and 112 Gb/s in PAM-4 reach 1×10^(-12)and 2.4×10^(-4)(KP4-FEC:forward error correction)thresholds under-4 dBm input power,respectively.Furthermore,the proposed receiver boasts a power consumption of approximately2.2 pJ/bit,indicating an energy efficient solution for data center traffic growth.展开更多
The final quality of complex conical-section rings depends on co-design of multiple processes in forming process chain.In this study,for a complex aeroengine casing ring with a large slope and a flange on its end,a co...The final quality of complex conical-section rings depends on co-design of multiple processes in forming process chain.In this study,for a complex aeroengine casing ring with a large slope and a flange on its end,a co-design method of the forming process chain is put forward towards the objective of precision forming,which not only proposes a standard process route composed of multiple processes of upsetting,punching,rectangular ring rolling,loose tooling forging and profiled ring rolling,but also presents co-design methods of dies and blanks for all the processes.For profiled ring rolling,a design method of preformed blank that makes the blank and the target conical-section ring have the same axial volume distribution is proposed.By the method,the axial metal redistribution during the process can be alleviated greatly thus improving the forming stability and precision of the ring.Based on the geometric features of designed preformed blank,design methods of blanks and dies for loose tolling forging,rectangular ring rolling,punching and upsetting are proposed sequentially.In view of the key roles of loose tooling forging(manufacturing the preformed blank)and profiled ring rolling on the final quality of the conical ring parts,inherited FE simulations for these two processes are performed to verify the proposed design methods and determine appropriate design parameter.It is demonstrated that the proposed design method has significant advantages in improving forming precision.Besides,a suggestive value 1.5 of the rolling ratio for profiled ring rolling(a key design parameter)is given based on comprehensive consideration of multiple indicators such as ring roundness,deformation uniformity and forming load.The corresponding industrial experiments performed illustrate that a high forming precision of the conical-section aeroengine casing ring is achieved.展开更多
文摘A behavioral model of the photodiode is presented.The model describes the relationship between photocurrent and incident optical power,and it also illustrates the impact of the reverse bias to the variation of the junction capacitance.According to this model,the photodiode and a CMOS receiver circuit are simulated and designed simultaneously under a universal circuit simulation environment.
文摘With the development of Ethernet systems and the growing capacity of modem silicon technology, embedded communication networks are playing an increasingly important role in embedded and safety critical systems. Hardware/software co-design is a methodology for solving design problems in processor based embedded systems. In this work, we implemented a new 1-cycle pipeline microprocessor and a fast Ethemet transceiver and established a low cost, high performance embedded network controller, and designed a TCP/IP stack to access the Intemet. We discussed the hardware/software architecture in the forepart, and then the whole system-on-a-chip on Altera Stratix EP1S25F780C6 device. Using the FPGA environment and SmartBit tester, we tested the system's throughput. Our simulation results showed that the maximum throughput of Ethemet packets is up to 7 Mbps, that of UDP packets is up to 5.8 Mbps, and that of TCP packets is up to 3.4 Mbps, which showed that this embedded system can easily transmit basic voice and video signals through Ethemet, and that using only one chip can realize that many electronic devices access to the Intemet directly and get high performance.
基金supported by the National Natural Science Foundation of China(6147315961374136+1 种基金61104028)the Research Innovation Program of Nantong University(YKC16004)
文摘A co-design scheme of event-triggered sampling mechanism and active fault tolerant control(FTC) is developed. Firstly,a fault diagnosis observer is designed to estimate both the fault and the state simultaneously by using the event-triggered sampled output. Some H∞constraints between the estimation errors and the event-triggered sampling mechanism are established to ensure the estimation accuracy. Then, based on the constraints and the obtained fault information, an event-triggered detector and a static fault tolerant controller are co-designed to guarantee the stability of the faulty system and to reduce the sensor communication cost.Furthermore, the problem of the event detector and dynamic FTC co-design is also investigated. Simulation results of an unstable batch reactor are finally provided to illustrate the effectiveness of the proposed method.
文摘In this paper,the Web-based integration methodology and framework have been developed to facilitate collabora- tive and concurrent engineering design in distributed manufacturing environments.The distributed concurrent engineering and co- design are discussed as key components in the mechanism.The related integration system is presented,which includes four function- al modules:co-design,Web-based visualization,manufacturing analysis and look-up service.It can be used for a design team geo- graphically distributed to organize a collaborative and concurrent engineering design effectively.In particular,the collaborative mechanism incorporated with Java-based and Internet-enabled technologies can generate extended strategies for design and planning. Thus,the proposed integration architecture enables the system to be generic,open and scalable.Finally,for the trend of global manufacturing,a case study of Internet-enabled collaborative optimization is introduced and a discussion on teamwork capability is made.
基金supported in part by the National Natural Science Foundation of China under Grant Nos. 62001061, 62171068 and 62171065ZTE Industry-University-Institute Cooperation Funds under Grant No. HC-CN-20210520005
文摘The basic theory of the sequential load-modulated balanced amplifier(SLMBA)is introduced and the working principle of its active load modulation is analyzed in this paper.In order to further improve the performance of the SLMBA,a codesigned method of the coupler and power amplifier(PA)is proposed,which is different from the traditional design of couplers.According to the back-off point and saturation point of the SLMBA,this coupler-PA codesign approach can make the working state of the coupler and three-way PA closer to the actual situation,which improves the overall performance of the SLMBA.The maximum output power ratio of the control PA and the balance PA is then determined by the preset output power back-off(OBO)of 10 dB,and the phase compensation line is determined by the trace of the load modulation impedance of the balanced PA.In order to verify the proposed method,an SLMBA operating at 1.5–2.7 GHz(57%relative bandwidth)is designed.The layout simulation results show that its saturated output powers achieve 40.7–43.7 dBm and the small signal gains are 9.7–12.4 dB.Besides,the drain efficiencies at the saturated point and 10 dB OBO point are 52.7%–73.7%and 44.9%–59.2%respectively.
基金financed in part by the Coordenacao de Aperfeicoamento de Pessoal de Nivel Superior-Brasil(CAPES)-Finance Code 001 and National Council for Scientific and Technological Development-CNPq.
文摘This article presents the scenario of programming use by architects and engineers,creating their own unique tools.The goal is to emulate and understand the phenomenon of Building Information Modeling(BIM)software customization by developing plug-ins that can explore the human-environment relationship.Demonstrate the process for building a plugin that seeks to equalize the theory of accessibility technical standards,visually impaired and architects.Use Design Science Research methodologies to guide the construction of artifacts for specific practical problems and the Collaborative Design/Co-design to understand and know the users’expertise.It is argued that the low quality of projects that include elements for the orientation of the visually impaired in Brazil is often related to an unstructured methodology in which important aspects such as the real needs of this group and the human-environment relationship are neglected.
文摘Energy harvesting(EH)technology is developed with the purpose of harnessing ambient energy in different physical forms.Although the available ambient energy is usually tiny,not comparable to the centralized power generation,it brings out the convenience of onsite power generation by drawing energy from local sources,which meets the emerging pow⁃er demand of long-lasting,extensively-deployed,and maintenance-free Internet of Things(IoT).Kinetic energy harvesting(KEH)is one of the most promising EH solutions toward the realization of battery-free IoT.The KEH-based battery-free IoT can be extensively deployed in the smart home,smart building,and smart city scenarios,enabling perceptivity,intelli⁃gence,and connectivity in many infrastructures.This paper gives a brief introduction to the configurations and basic principles of practical KEH-IoT systems,including their mechani⁃cal,electrical,and computing parts.Although there are already a few commercial products in some specific application markets,the understanding and practice in the co-design and optimization of a single KEH-IoT device are far from mature,let alone the conceived multia⁃gent energy-autonomous intelligent systems.Future research and development of the KEHIoT system beckons for more exchange and collaboration among mechanical,electrical,and computer engineers toward general design guidelines to cope with these interdisciplinary en⁃gineering problems.
文摘Human detection is important in many applications and has attracted significant attention over the last decade. The Histograms of Oriented Gradients (HOG) as effective local descriptors are used with binary sliding window mechanism to achieve good detection performance. However, the computation of HOG under such framework is about billion times and the pure software implementation for HOG computation is hard to meet the real-time requirement. This study proposes a hardware architecture called One-HOG accelerator operated on FPGA of Xilinx Spartan-6 LX-150T that provides an efficient way to compute HOG such that an embedded real-time platform of HW/SW co-design for application to crowd estimation and analysis is achieved. The One-HOG accelerator mainly consists of gradient module and histogram module. The gradient module is for computing gradient magnitude and orientation;histogram module is for generating a 36-D HOG feature vector. In addition to hardware realization, a new method called Histograms-of-Oriented-Gradients AdaBoost Long-Feature-Vector (HOG-AdaBoost-LFV) human classifier is proposed to significantly decrease the number of times to compute the HOG without sacrificing detection performance. The experiment results from three static image and four video datasets demonstrate that the proposed SW/HW (software/hardware) co-design system is 13.14 times faster than the pure software computation of Dalal algorithm.
文摘This research is focused on internet shoppers co-design, individual tendency of trust, trust belief, and purchase intention. An online questionnaire was set out in survey form on Google Docs in or-der to collect data. The survey was conducted of participants in Mongolia. 236 usable responses were obtained from Mongolian potential customers in order to examine constructs. The findings suggest that co-design and individual tendency of trust have significant positive effect on the trust levels throughout intention to purchase.
基金financed in part by the Coordenação de Aperfeiçoamento de Pessoal de Nível Superior-Brasil(CAPES)-Finance Code 001National Council for Scientific and Technological Development(CNPq)Foundation for Research Support of the State of Rio Grande do Sul(FAPERGS).
文摘The active participation of users in the Design Process(DP)in architecture is a collective action,which aims to meet their real needs.In terms of open spaces for children,squares and playgrounds become leisure spaces known for being places of coexistence,interaction and entertainment.However,the vast majority of children’s environments are planned and organized considering the perceptions and experiences of adults.Children become absent from the process of building the contemporary city.Co-design is an important tool for adding users to DP.The objective of this work is,therefore,to include children in the DP of a Pocket Park,using methods and tools to support co-design.The work was structured based on bibliographic review,Focus Group,Culture Maker and Digital Fabrication.The research indicated that the collaborative project promotes assertive communication between children and designers,welcoming their ideas and perceptions in a flexible way.
基金This work was supported by the National Natural Science Foundation of China(92167205,92167205 and 62025305).
文摘As a result of the growing complexity of industrial Internet applications,traditional hardware-based network designs are encountering challenges in terms of programmability and dynamic adaptability as they struggle to meet the real-time,high-reliability transmission requirements for the vast quantities of data generated in industrial environments.This paper proposes a holistic software-defined deterministic network(HSDDN)design solution.This solution uses a centralized controller to implement a comprehensive software definition,ranging from the network layer down to the physical layer.Within the wireless access domain,we decouple the standard radio-frequency modules from baseband processing to realize a software-defined physical layer,which then allows us to adjust the data transmission cycles and tag the trigger rates to meet demand for low-power,high-concurrency transmission.Within the wired network domain,we integrate software-defined networking with time-sensitive networking and propose a coordinated design strategy to address routing and the deterministic scheduling problem.We define a set of constraints to ensure collaborative transmission of the periodic and aperiodic data flows.To guarantee load balancing across all paths and timeslots,we introduce the Jain’s fairness index as the optimization objective and then construct a nondeterministic polynomial-time(NP)-hard joint optimization problem.Furthermore,an algorithm called Tabu search for routing and scheduling with dual-stages(TSRS-DS)is proposed.Simulation experiments demonstrate the effectiveness of the proposed HSDDN architecture.
基金supported in part by the National Natural Science Foundation of China(NSFC)(Nos.62235017 and 62235015)the Young Elite Scientist Sponsorship Program(No.YESS20220688)the National Key Research and Development Program of China(No.2020YFB2205700)。
文摘A 4×112 Gb/s hybrid-integrated optical receiver is demonstrated based on the silicon-photonic vertical p-i-n photodetector and silicon–germanium transimpedance amplifier.We propose a photonic-electronic co-design technique to optimize both the device-level and system-level performance,based on the end-to-end equivalent circuit model of the receiver.Continuous-time linear equalization and shunt peaking are employed to enhance the frequency response.Experimental results reveal that the optical-to-electrical 3-dB bandwidth of the receiver is 48 GHz.Clear open NRZ eye diagrams at56 Gb/s and PAM-4 eye diagrams at 112 Gb/s are achieved without an equalizer in the oscilloscope.The measured bit error rates for 56 Gb/s in NRZ and 112 Gb/s in PAM-4 reach 1×10^(-12)and 2.4×10^(-4)(KP4-FEC:forward error correction)thresholds under-4 dBm input power,respectively.Furthermore,the proposed receiver boasts a power consumption of approximately2.2 pJ/bit,indicating an energy efficient solution for data center traffic growth.
基金the National Natural Science Foundation of China(52275378).
文摘The final quality of complex conical-section rings depends on co-design of multiple processes in forming process chain.In this study,for a complex aeroengine casing ring with a large slope and a flange on its end,a co-design method of the forming process chain is put forward towards the objective of precision forming,which not only proposes a standard process route composed of multiple processes of upsetting,punching,rectangular ring rolling,loose tooling forging and profiled ring rolling,but also presents co-design methods of dies and blanks for all the processes.For profiled ring rolling,a design method of preformed blank that makes the blank and the target conical-section ring have the same axial volume distribution is proposed.By the method,the axial metal redistribution during the process can be alleviated greatly thus improving the forming stability and precision of the ring.Based on the geometric features of designed preformed blank,design methods of blanks and dies for loose tolling forging,rectangular ring rolling,punching and upsetting are proposed sequentially.In view of the key roles of loose tooling forging(manufacturing the preformed blank)and profiled ring rolling on the final quality of the conical ring parts,inherited FE simulations for these two processes are performed to verify the proposed design methods and determine appropriate design parameter.It is demonstrated that the proposed design method has significant advantages in improving forming precision.Besides,a suggestive value 1.5 of the rolling ratio for profiled ring rolling(a key design parameter)is given based on comprehensive consideration of multiple indicators such as ring roundness,deformation uniformity and forming load.The corresponding industrial experiments performed illustrate that a high forming precision of the conical-section aeroengine casing ring is achieved.