Bio-silica issued from diatom, a microalgae, is attracted increasing attention in material science thanks to its peculiar nanoarchitecture and related properties with versatile applications. The present work is a deep...Bio-silica issued from diatom, a microalgae, is attracted increasing attention in material science thanks to its peculiar nanoarchitecture and related properties with versatile applications. The present work is a deep analysis on morphological and chemical properties of bio-silica issued from fossil origin (diatomaceous earth) and living one (algal paste). An optimization in purification protocol was performed to obtain multiparous bio-silica from its raw media with keeping its original shape entirely. Multiple characterization methods as scanning electronic microscopy (SEM), infrared spectroscopy, x-ray diffraction (DRX), X-ray photoelectron spectroscopy (XPS), energy dispersive X-ray spectroscopy (EDX), nitrogen adsorption and inverse gas chromatography (IGC), were used to check the purification protocol efficiency as well as to gather accurate information on morphology and chemical composition of diatom material obtained in large amount.展开更多
Compacted clay liners are extensively used as barriers to control the upward diffusion of vapors of volatile or semi-volatile organic contaminants released from unsaturated contaminated soils at industrycontaminated s...Compacted clay liners are extensively used as barriers to control the upward diffusion of vapors of volatile or semi-volatile organic contaminants released from unsaturated contaminated soils at industrycontaminated sites.This study aimed to investigate the gas diffusion barrier performance of compacted clayey soils amended with three agents including attapulgite and diatomite individually,and attapulgite/diatomite mixture.The properties including water retention,volumetric shrinkage,gas diffusion,and unconfined compressive strength were evaluated through a series of laboratory tests of amended compacted clayey soils.The results demonstrate that the decrease in volume proportions of interaggregate pores leads to an increase in unconfined compressive strength(qu).Both hydrophilic groups and microstructures of attapulgite and diatomite result in an increase in water retention percent(Wt)of compacted clayey soil specimens after amendment regardless of the type of agent or initial water content(w0).Furthermore,the ratio of the gas diffusion coefficient(De)to the gas diffusion coefficient in the air(Da)was significantly reduced owing to a decrease in volume proportions of inter-aggregate pores,hydrophilic group,and microstructures of attapulgite and diatomite.Scanning electron microscope analyses revealed that rod-shaped attapulgite filled the inter-aggregate pores formed by clay particles,whereas the disc-shaped diatomite particles,characterized by micropores,failed to obstruct the interaggregate pores due to their larger particle size.Mercury intrusion porosimetry(MIP)analyses showed a reduction in pore volume in the inter-aggregate pores,leading to a reduction in the total pore volume for both the attapulgite and attapulgite/diatomite mixture amended clays,which is in accordance with the scanning electron microscope(SEM)results.The findings are pertinent to the practical application of compacted clay liners as gas barriers against the upward migration of volatile or semi-volatile organic contaminants at contaminated sites.展开更多
The photodisinfection process using biomolded semiconductor photocatalysts can inactivate bacteria in wastewater washing machine samples. The comparative study evaluated the photocatalyst material titanium dioxide (Ti...The photodisinfection process using biomolded semiconductor photocatalysts can inactivate bacteria in wastewater washing machine samples. The comparative study evaluated the photocatalyst material titanium dioxide (TiO2) synthesized with diatomite and biocharcoal biotemplate (TiO2-Biocharcoal and TiO2-Diatomite) in photodisinfection processes using domestic washing machine wastewater samples, the results of bacterial inactivation were above 96%. The efficiency of the photodisinfection process was evaluated by counting the number of colonies of the bacteria. Experiments under LED solar lamps presented similar bacterial inactivation, and a correlation with kinetic models. The kinetic study demonstrated a curved regression, indicating a better fit with the Hom model. A tail at the end of the modeling curve indicates the presence of a high concentration of inactive bacteria in the medium, while a shoulder at the beginning of the curve suggests a heterogeneous sample with a high concentration of gram-positive bacteria. The toxicity tests performed with wastewater samples without light exposure indicated low toxicity for both materials. The study presented promising disinfection results for an accessible and efficient photo-sterilization process of water contaminated with bacteria using abundant solar and renewable energy throughout the national territory. .展开更多
The purpose of this paper is to make a contribution to the use of diatomite as a mineral additive in the composition of compressed earth blocks. The aim is to study the influence of diatomite on the hygrothermal behav...The purpose of this paper is to make a contribution to the use of diatomite as a mineral additive in the composition of compressed earth blocks. The aim is to study the influence of diatomite on the hygrothermal behaviour of composites based on clay soils. For this reason, two clay soils with different physicochemical and mineralogical compositions were incorporated with diatomite at percentages ranging from 5% to 50% with a step of 5 to produce compressed earth blocks. After assessing the hydric and thermal characteristics of the composites, it was found that the incorporation of diatomite into the clay matrix favours the absorption of water by capillary action for all the composites. The diatomite-amended blocks subjected to the rain erosion test were less eroded than the unamended blocks. In addition, BYD composites were found to be more resistant than BTD composites, due to the high percentage of clay in T soil. The thermal conductivity of the latter decreases respectively from 0.72 to 0.29 W/m∙K for BTD composites and from 0.52 to 0.21 W/m∙K for BYD composites. This reduction proves the thermal insulating properties of diatomite. Despite the high capillary absorption capacity of these composites, they have good thermal properties, enabling them to be used in the construction of buildings for improved indoor thermal comfort.展开更多
Since the discovery of mesoporous silica in 1990s,there have been numerous mesoporous silica-based nanomaterials developed for catalytic applications,aiming at enhanced catalytic activity and stability.Recently,there ...Since the discovery of mesoporous silica in 1990s,there have been numerous mesoporous silica-based nanomaterials developed for catalytic applications,aiming at enhanced catalytic activity and stability.Recently,there have also been considerable interests in endowing them with hierarchical porosities to overcome the diffusional limitation for those with long unimodal channels.Present processes of making mesoporous silica largely rely on chemical sources which are relatively expensive and impose environmental concerns on their processes.In this regard,it is desirable to develop hierarchical silica supports from natural minerals.Herein,we present a series of work on surface reconstruction,modification,and functionalization to produce diatomite-based catalysts with original morphology and macro-meso-micro porosities and to test their suitability as catalyst supports for both liquid-and gas-phase reactions.Two wet-chemical routes were developed to introduce mesoporosity to both amorphous and crystalline diatomites.Importantly,we have used computational modeling to affirm that the diatomite morphology can improve catalytic performance based on fluid dynamics simulations.Thus,one could obtain this type of catalysts from numerous natural diatoms that have inherently intricate morphologies and shapes in micrometer scale.In principle,such catalytic nanocomposites acting as miniaturized industrial catalysts could be employed in microfluidic reactors for process intensification.展开更多
Catalytic hydrogenation of CO_(2) using renewable hydrogen not only reduces greenhouse gas emissions,but also provides industrial chemicals.Herein,a Co-Fe bimetallic catalyst was developed by a facile reactive ball-mi...Catalytic hydrogenation of CO_(2) using renewable hydrogen not only reduces greenhouse gas emissions,but also provides industrial chemicals.Herein,a Co-Fe bimetallic catalyst was developed by a facile reactive ball-milling method for highly active and selective hydrogenation of CO_(2) to value-added hydrocarbons.When reacted at 320℃,1.0 MPa and 9600 mL h^(-1) g_(cat)^(-1),the selectivity to light olefin(C_(2)^(=)-C_(4)^(=)) and C_(5)+ species achieves 57.3% and 22.3%,respectively,at a CO_(2) co nversion of 31.4%,which is superior to previous Fe-based catalysts.The CO_(2) activation can be promoted by the CoFe phase formed by reactive ball milling of the Fe-Co_(3)O_(4) mixture,and the in-situ Co_(2)C and Fe_(5)C_(2) formed during hydrogenation are beneficial for the C-C coupling reaction.The initial C-C coupling is related to the combination of CO species with the surface carbon of Fe/Co carbides,and the sustained C-C coupling is maintained by self-recovery of defective carbides.This new strategy contributes to the development of efficient catalysts for the hydrogenation of CO_(2) to value-added hydrocarbons.展开更多
A kind of neat asphalt and three kinds of diatomite asphalt are tested using differential scanning calorimetry(DSC). The anti-cracking mechanism of diatomite asphalt is analyzed by DSC and the thermal stress restrai...A kind of neat asphalt and three kinds of diatomite asphalt are tested using differential scanning calorimetry(DSC). The anti-cracking mechanism of diatomite asphalt is analyzed by DSC and the thermal stress restrained specimen test(TSRST) of the asphalt mixtures. The results show that the low temperature performance of diatomite asphalt is better than that of neat asphalt. The glass transition temperature can reflect the low temperature performance of the diatomite asphalt better and has a good relationship with breaking temperatures. Besides, the TSRST, the bending test, the compressing test and the contraction coefficient test are used to study the low temperature performance of the diatomite asphalt mixture. The results prove that the low temperature performance of the diatomite asphalt mixture is better than that of the neat asphalt mixture. The critical bending strain energy density and the compressing strain energy density of the diatomite asphalt mixture are greater than those of the neat asphalt mixture. After adding diatomite to the asphalt mixture, the contraction coefficient is reduced. Based on the above results, the anti-cracking mechanism of the diatomite asphalt mixture is analyzed from the angle of contraction performance and breaking energy.展开更多
Diatomite-based porous ceramics were adopted as carriers to immobilize nano-TiO2 via a hydrolysis-deposition technique. The thermal degradation of as-prepared composites was investigated using thermogravimetric-differ...Diatomite-based porous ceramics were adopted as carriers to immobilize nano-TiO2 via a hydrolysis-deposition technique. The thermal degradation of as-prepared composites was investigated using thermogravimetric-differential thermal analysis, and the phase and microstructure were characterized by X-ray diffraction, Fourier transform infrared spectroscopy, and transmission electron microscopy. The results indicated that the carriers were encapsulated by nano-TiO2 with a thickness of 300-450 nm. The main crystalline phase of TiO2 calcined at 650~C was anatase, and the average grain size was 8.3 nm. The FT-IR absorption bands at 955.38 cm1 suggested that new chemical bonds among Ti, O, and Si had formed in the composites. The photocatalytic (PC) activity of the composites was investigated un- der UV irradiation. Furthermore, the photodegradation kinetics of formaldehyde was investigated using the composites as the cores of an air cleaner. A kinetics study showed that the reaction rate constants of the gas-phase PC reaction of formaldehyde were k = 0.576 mg'm3·min^-1 and K = 0.048 m3/mg.展开更多
文摘Bio-silica issued from diatom, a microalgae, is attracted increasing attention in material science thanks to its peculiar nanoarchitecture and related properties with versatile applications. The present work is a deep analysis on morphological and chemical properties of bio-silica issued from fossil origin (diatomaceous earth) and living one (algal paste). An optimization in purification protocol was performed to obtain multiparous bio-silica from its raw media with keeping its original shape entirely. Multiple characterization methods as scanning electronic microscopy (SEM), infrared spectroscopy, x-ray diffraction (DRX), X-ray photoelectron spectroscopy (XPS), energy dispersive X-ray spectroscopy (EDX), nitrogen adsorption and inverse gas chromatography (IGC), were used to check the purification protocol efficiency as well as to gather accurate information on morphology and chemical composition of diatom material obtained in large amount.
基金the funding support from the National Natural Science Foundation of China(Grant No.42177133)the Primary Research and Development Plan of Jiangsu Province(Grant No.BE2022830)the Primary Research and Development Plan of Anhui Province(Grant No.2023t07020018).
文摘Compacted clay liners are extensively used as barriers to control the upward diffusion of vapors of volatile or semi-volatile organic contaminants released from unsaturated contaminated soils at industrycontaminated sites.This study aimed to investigate the gas diffusion barrier performance of compacted clayey soils amended with three agents including attapulgite and diatomite individually,and attapulgite/diatomite mixture.The properties including water retention,volumetric shrinkage,gas diffusion,and unconfined compressive strength were evaluated through a series of laboratory tests of amended compacted clayey soils.The results demonstrate that the decrease in volume proportions of interaggregate pores leads to an increase in unconfined compressive strength(qu).Both hydrophilic groups and microstructures of attapulgite and diatomite result in an increase in water retention percent(Wt)of compacted clayey soil specimens after amendment regardless of the type of agent or initial water content(w0).Furthermore,the ratio of the gas diffusion coefficient(De)to the gas diffusion coefficient in the air(Da)was significantly reduced owing to a decrease in volume proportions of inter-aggregate pores,hydrophilic group,and microstructures of attapulgite and diatomite.Scanning electron microscope analyses revealed that rod-shaped attapulgite filled the inter-aggregate pores formed by clay particles,whereas the disc-shaped diatomite particles,characterized by micropores,failed to obstruct the interaggregate pores due to their larger particle size.Mercury intrusion porosimetry(MIP)analyses showed a reduction in pore volume in the inter-aggregate pores,leading to a reduction in the total pore volume for both the attapulgite and attapulgite/diatomite mixture amended clays,which is in accordance with the scanning electron microscope(SEM)results.The findings are pertinent to the practical application of compacted clay liners as gas barriers against the upward migration of volatile or semi-volatile organic contaminants at contaminated sites.
文摘The photodisinfection process using biomolded semiconductor photocatalysts can inactivate bacteria in wastewater washing machine samples. The comparative study evaluated the photocatalyst material titanium dioxide (TiO2) synthesized with diatomite and biocharcoal biotemplate (TiO2-Biocharcoal and TiO2-Diatomite) in photodisinfection processes using domestic washing machine wastewater samples, the results of bacterial inactivation were above 96%. The efficiency of the photodisinfection process was evaluated by counting the number of colonies of the bacteria. Experiments under LED solar lamps presented similar bacterial inactivation, and a correlation with kinetic models. The kinetic study demonstrated a curved regression, indicating a better fit with the Hom model. A tail at the end of the modeling curve indicates the presence of a high concentration of inactive bacteria in the medium, while a shoulder at the beginning of the curve suggests a heterogeneous sample with a high concentration of gram-positive bacteria. The toxicity tests performed with wastewater samples without light exposure indicated low toxicity for both materials. The study presented promising disinfection results for an accessible and efficient photo-sterilization process of water contaminated with bacteria using abundant solar and renewable energy throughout the national territory. .
文摘The purpose of this paper is to make a contribution to the use of diatomite as a mineral additive in the composition of compressed earth blocks. The aim is to study the influence of diatomite on the hygrothermal behaviour of composites based on clay soils. For this reason, two clay soils with different physicochemical and mineralogical compositions were incorporated with diatomite at percentages ranging from 5% to 50% with a step of 5 to produce compressed earth blocks. After assessing the hydric and thermal characteristics of the composites, it was found that the incorporation of diatomite into the clay matrix favours the absorption of water by capillary action for all the composites. The diatomite-amended blocks subjected to the rain erosion test were less eroded than the unamended blocks. In addition, BYD composites were found to be more resistant than BTD composites, due to the high percentage of clay in T soil. The thermal conductivity of the latter decreases respectively from 0.72 to 0.29 W/m∙K for BTD composites and from 0.52 to 0.21 W/m∙K for BYD composites. This reduction proves the thermal insulating properties of diatomite. Despite the high capillary absorption capacity of these composites, they have good thermal properties, enabling them to be used in the construction of buildings for improved indoor thermal comfort.
基金the financial support provided by the National Research Foundation (NRF), Prime Minister’s Office, Singapore, under its Campus for Research Excellence and Technological Enterprise (CREATE) programpartially funded by the National University of Singapore under its Flagship Green Energy Program (GEP), Agency for Science, Technology and Research (A*STAR) under its Low Carbon Energy Research Funding Initiative (LCER-FI)Chongqing Science and Technology Research and Development Base Construction Project (cstc2013gjhz0029)
文摘Since the discovery of mesoporous silica in 1990s,there have been numerous mesoporous silica-based nanomaterials developed for catalytic applications,aiming at enhanced catalytic activity and stability.Recently,there have also been considerable interests in endowing them with hierarchical porosities to overcome the diffusional limitation for those with long unimodal channels.Present processes of making mesoporous silica largely rely on chemical sources which are relatively expensive and impose environmental concerns on their processes.In this regard,it is desirable to develop hierarchical silica supports from natural minerals.Herein,we present a series of work on surface reconstruction,modification,and functionalization to produce diatomite-based catalysts with original morphology and macro-meso-micro porosities and to test their suitability as catalyst supports for both liquid-and gas-phase reactions.Two wet-chemical routes were developed to introduce mesoporosity to both amorphous and crystalline diatomites.Importantly,we have used computational modeling to affirm that the diatomite morphology can improve catalytic performance based on fluid dynamics simulations.Thus,one could obtain this type of catalysts from numerous natural diatoms that have inherently intricate morphologies and shapes in micrometer scale.In principle,such catalytic nanocomposites acting as miniaturized industrial catalysts could be employed in microfluidic reactors for process intensification.
基金supported by the National Natural Science Foundation of China (22008098, 21978156, 42002040)the Program for Innovative Research Team (in Science and Technology) in University of Henan Province (21IRTSTHN004)+1 种基金the Program for Science & Technology Innovation Talents in Universities of Henan Province (22HASTIT008)the Foundation of State Key Laboratory of High-efficiency Utilization of Coal and Green Chemical Engineering (2022-K34)。
文摘Catalytic hydrogenation of CO_(2) using renewable hydrogen not only reduces greenhouse gas emissions,but also provides industrial chemicals.Herein,a Co-Fe bimetallic catalyst was developed by a facile reactive ball-milling method for highly active and selective hydrogenation of CO_(2) to value-added hydrocarbons.When reacted at 320℃,1.0 MPa and 9600 mL h^(-1) g_(cat)^(-1),the selectivity to light olefin(C_(2)^(=)-C_(4)^(=)) and C_(5)+ species achieves 57.3% and 22.3%,respectively,at a CO_(2) co nversion of 31.4%,which is superior to previous Fe-based catalysts.The CO_(2) activation can be promoted by the CoFe phase formed by reactive ball milling of the Fe-Co_(3)O_(4) mixture,and the in-situ Co_(2)C and Fe_(5)C_(2) formed during hydrogenation are beneficial for the C-C coupling reaction.The initial C-C coupling is related to the combination of CO species with the surface carbon of Fe/Co carbides,and the sustained C-C coupling is maintained by self-recovery of defective carbides.This new strategy contributes to the development of efficient catalysts for the hydrogenation of CO_(2) to value-added hydrocarbons.
基金The National Natural Science Foundation of China(No.50778057)
文摘A kind of neat asphalt and three kinds of diatomite asphalt are tested using differential scanning calorimetry(DSC). The anti-cracking mechanism of diatomite asphalt is analyzed by DSC and the thermal stress restrained specimen test(TSRST) of the asphalt mixtures. The results show that the low temperature performance of diatomite asphalt is better than that of neat asphalt. The glass transition temperature can reflect the low temperature performance of the diatomite asphalt better and has a good relationship with breaking temperatures. Besides, the TSRST, the bending test, the compressing test and the contraction coefficient test are used to study the low temperature performance of the diatomite asphalt mixture. The results prove that the low temperature performance of the diatomite asphalt mixture is better than that of the neat asphalt mixture. The critical bending strain energy density and the compressing strain energy density of the diatomite asphalt mixture are greater than those of the neat asphalt mixture. After adding diatomite to the asphalt mixture, the contraction coefficient is reduced. Based on the above results, the anti-cracking mechanism of the diatomite asphalt mixture is analyzed from the angle of contraction performance and breaking energy.
基金financially supported by the National Natural Science Foundation of China (No. 50708037)the National Science Fund for Excellent Young Scholars of China (No. 51522402)+1 种基金the Science and Technology Research Projects in Zhengzhou (No. 141PPTGG388)the National Innovation and Entrepreneurship Training Program of the Undergraduate (No. 201610078034)
文摘Diatomite-based porous ceramics were adopted as carriers to immobilize nano-TiO2 via a hydrolysis-deposition technique. The thermal degradation of as-prepared composites was investigated using thermogravimetric-differential thermal analysis, and the phase and microstructure were characterized by X-ray diffraction, Fourier transform infrared spectroscopy, and transmission electron microscopy. The results indicated that the carriers were encapsulated by nano-TiO2 with a thickness of 300-450 nm. The main crystalline phase of TiO2 calcined at 650~C was anatase, and the average grain size was 8.3 nm. The FT-IR absorption bands at 955.38 cm1 suggested that new chemical bonds among Ti, O, and Si had formed in the composites. The photocatalytic (PC) activity of the composites was investigated un- der UV irradiation. Furthermore, the photodegradation kinetics of formaldehyde was investigated using the composites as the cores of an air cleaner. A kinetics study showed that the reaction rate constants of the gas-phase PC reaction of formaldehyde were k = 0.576 mg'm3·min^-1 and K = 0.048 m3/mg.