Let (H, R) be a co-Frobenius quasitriangular Hopf algebra with antipode S. Denote the set of group-like elements in H by G (H). In this paper, we find a necessary and sufficient condition for (H, R) to have a ribbon e...Let (H, R) be a co-Frobenius quasitriangular Hopf algebra with antipode S. Denote the set of group-like elements in H by G (H). In this paper, we find a necessary and sufficient condition for (H, R) to have a ribbon element. The condition gives a connection with the order of G (H) and the order of S2.展开更多
A lot of combinatorial objects have a natural bialgebra structure. In this paper, we prove that the vector space spanned by labeled simple graphs is a bialgebra with the conjunction product and the unshuffle coproduct...A lot of combinatorial objects have a natural bialgebra structure. In this paper, we prove that the vector space spanned by labeled simple graphs is a bialgebra with the conjunction product and the unshuffle coproduct. In fact, it is a Hopf algebra since it is graded connected. The main conclusions are that the vector space spanned by labeled simple graphs arising from the unshuffle coproduct is a Hopf algebra and that there is a Hopf homomorphism from permutations to label simple graphs.展开更多
Let π be a group with a unit 1; H is a Hopf π- coalgebra and A is a right π-H-comodule algebra. First, the notion of a two-sided relative (A, H)-Hopf π-comodule is introduced; then it is obtained that Hom A H (...Let π be a group with a unit 1; H is a Hopf π- coalgebra and A is a right π-H-comodule algebra. First, the notion of a two-sided relative (A, H)-Hopf π-comodule is introduced; then it is obtained that Hom A H (M, N) H and HOMA(M, N) are isomorphic as right Hopf π-H-comodules, where Hom A H(M, N) denotes the space of right A-module fight H-comodule morphisms and HOMa (M, N) denotes the rational space of a space Hom A(M, N) of right A-module morphisms. Secondly, the structure theorem of endomorphism algebras of two-sided relative (A, H)-Hopf π--comodules is established; that is, End A H (M)#H and END A(M, N) are isomorphic as fight Hopf π-H-comodules and algebras.展开更多
The concept of weak Hopf group coalgebras is a natural generalization of the notions of both weak Hopf algebras(quantum groupoids) and Hopf group coalgebras.Let π be a group.The Morita context is considered in the ...The concept of weak Hopf group coalgebras is a natural generalization of the notions of both weak Hopf algebras(quantum groupoids) and Hopf group coalgebras.Let π be a group.The Morita context is considered in the sense of weak Hopf π-coalgebras.Let H be a finite type weak Hopf π-coalgebra,and A a weak right π-H-comodule algebra.It is constructed that a Morita context connects A#H* which is a weak smash product and the ring of coinvariants AcoH.This result is the generalization of that of Wang's in the paper "Morita contexts,π-Galois extensions for Hopf π-coalgebras" in 2006.Furthermore,the result is important for constructing weak π-Galois extensions.展开更多
Let G be a group and (A, B) be a pair of multiplier Hopf algebras, where B is regular G-cograded. Let π be a crossing action of G on B, D^π=A^cop∝B=+p∈GDπ^p with Dπ^p=A^cop∝Bp, is the Drinfeld double of the ...Let G be a group and (A, B) be a pair of multiplier Hopf algebras, where B is regular G-cograded. Let π be a crossing action of G on B, D^π=A^cop∝B=+p∈GDπ^p with Dπ^p=A^cop∝Bp, is the Drinfeld double of the pair (A, B), and then the deformation D^π becomes a multiplier Hopf algebra. B×A can be considered as a subalgebra of M(D^π×D^π), the image of element b×a in B×A is (1∝b)×(a∝1) in M(D^π×D^π). Let W =∑αWα∈ M(B×A) be a π-canonical multiplier for the pair (A, B) with Wα∈M(Bα×A) for all α∈G. The image of W in M(D^π×D^π)is a π-quasitriangular structure over D^π.展开更多
This paper gives a sufficient and necessary condition for twisted products to be weak Hopf algebras, moreover, gives a description for smash products to be weak Hopf algebras. It respectively generalizes R.K.Molnar...This paper gives a sufficient and necessary condition for twisted products to be weak Hopf algebras, moreover, gives a description for smash products to be weak Hopf algebras. It respectively generalizes R.K.Molnar's major result and I.Boca's result.展开更多
Some basic properties of the antipode of an N0I-graded x-Hopf algebra are studied. Also, several equivalent conditions of an N0I-graded x-bialgebra (x-Hopf algebra) are given.
The purpose of this paper is to present some dual properties of dual comodule. It turns out that dual comodule has universal property (cf.Theorem 2). Since (( )*,()°) is an adjoint pair (cf.Theorem 3), some nice ...The purpose of this paper is to present some dual properties of dual comodule. It turns out that dual comodule has universal property (cf.Theorem 2). Since (( )*,()°) is an adjoint pair (cf.Theorem 3), some nice properties of functor ( )° are obtained. Finally Theoram 4 provides that the cotensor product is the dual of the tensor product by (M (?)A N)°≌M°□A°N°. Moreover, the result Hom(M,JV)≌ComA°(N°,M°) is proved for finite related modules M, N over a reflexive algebra A.展开更多
The main aim of this paper is to study the twisting theory of weak Hopf algebras and give an equivalence between the (braided) monoidal categories of weak Hopf bimodules over the original and the twisted weak Hopf a...The main aim of this paper is to study the twisting theory of weak Hopf algebras and give an equivalence between the (braided) monoidal categories of weak Hopf bimodules over the original and the twisted weak Hopf algebra to generalize the result from Oeckl (2000).展开更多
The Yetter-Drinfeld category of the Hopf algebra over a field is a prebraided category. In this paper we prove this result for the weak Hopf algebra. We study the smash product and smash coproduct, weak biproducts in ...The Yetter-Drinfeld category of the Hopf algebra over a field is a prebraided category. In this paper we prove this result for the weak Hopf algebra. We study the smash product and smash coproduct, weak biproducts in the weak Hopf algebra over a field k. For a weak Hopf algebra A in left Yetter-Drinfeld category HHYD, we prove that the weak biproducts of A and H is a weak Hopf algebra.展开更多
In this paper, we categorify a Hom-associative algebra by imposing the Homassociative law up to some isomorphisms on the multiplication map and requiring that these isomorphisms satisfy the Pentagon axiom, and obtain ...In this paper, we categorify a Hom-associative algebra by imposing the Homassociative law up to some isomorphisms on the multiplication map and requiring that these isomorphisms satisfy the Pentagon axiom, and obtain a 2-Hom-associative algebra. On the other hand, we introduce the dual Hom-quasi-Hopf algebra and show that any dual Homquasi-Hopf algebras can be viewed as a 2-Hom-associative algebra.展开更多
Let A be a commutative C^* -algebra. By the Gelfand-Naimark theorem, there exists a locally compact space G such that A is isomorphic to Co(G), the C^*-algebra of all complex continuous functions on G vanishing at...Let A be a commutative C^* -algebra. By the Gelfand-Naimark theorem, there exists a locally compact space G such that A is isomorphic to Co(G), the C^*-algebra of all complex continuous functions on G vanishing at infinity. The result is generalized to the ease of Hopf C^*-algebra, where G is altered by a locally compact group. Using the isomorphic representation, the counit ε and the antipode S of a commutative Hopf C^*-algebra are proposed.展开更多
In this paper, we study non-cosemisimple Hopf algebras through their underlying coalgebra structure. We introduce the concept of the maximal pointed subcoalgebra/Hopf sub- algebra. For a non-cosemisimple Hopf algebra ...In this paper, we study non-cosemisimple Hopf algebras through their underlying coalgebra structure. We introduce the concept of the maximal pointed subcoalgebra/Hopf sub- algebra. For a non-cosemisimple Hopf algebra A with the Chevalley property, if its diagram is a Nichols algebra, then the diagram of its maximal pointed Hopf subalgebra is also a Nichols algebra. When A is of finite dimension, we provide a necessary and sufficient condition for A's diagram equaling the diagram of its maximal pointed Hopf subalgebra.展开更多
Let H be a finite-dimensional weak Hopf algebra and A a left H-module algebra with its invariant subalgebra A^H.We prove that the smash product A#H is an A-ring with a grouplike character, and give a criterion for A#H...Let H be a finite-dimensional weak Hopf algebra and A a left H-module algebra with its invariant subalgebra A^H.We prove that the smash product A#H is an A-ring with a grouplike character, and give a criterion for A#H to be Frobenius over A. Using the theory of A-rings, we mainly construct a Morita context 〈A^H,A#H,A,A,τ,μ〉 connecting the smash product A#H and the invariant subalgebra A^H , which generalizes the corresponding results obtained by Cohen, Fischman and Montgomery.展开更多
Let H be a finite Hopf C^* -algebra and H′be its dual Hopf algebra. Drinfeld's quantum double D(H) of H is a Hopf^*-algebra. There is a faithful positive linear functional θ on D(H). Through the associated Ge...Let H be a finite Hopf C^* -algebra and H′be its dual Hopf algebra. Drinfeld's quantum double D(H) of H is a Hopf^*-algebra. There is a faithful positive linear functional θ on D(H). Through the associated Gelfand-Naimark-Segal (GNS) representation, D(H) has a faithful^* -representation so that it becomes a Hopf C^* -algebra. The canonical embedding map of H into D(H) is isometric.展开更多
In this paper, we study a Yetter-Drinfeld module V over a weak Hopf algebra H.Although the category of all left H-modules is not a braided tensor category, we can define a Yetter-Drinfeld module. Using this Yetter-Dri...In this paper, we study a Yetter-Drinfeld module V over a weak Hopf algebra H.Although the category of all left H-modules is not a braided tensor category, we can define a Yetter-Drinfeld module. Using this Yetter-Drinfeld modules V, we construct Nichols algebra B(V) over the weak Hopf algebra H, and a series of weak Hopf algebras. Some results of [8] are generalized.展开更多
文摘Let (H, R) be a co-Frobenius quasitriangular Hopf algebra with antipode S. Denote the set of group-like elements in H by G (H). In this paper, we find a necessary and sufficient condition for (H, R) to have a ribbon element. The condition gives a connection with the order of G (H) and the order of S2.
文摘A lot of combinatorial objects have a natural bialgebra structure. In this paper, we prove that the vector space spanned by labeled simple graphs is a bialgebra with the conjunction product and the unshuffle coproduct. In fact, it is a Hopf algebra since it is graded connected. The main conclusions are that the vector space spanned by labeled simple graphs arising from the unshuffle coproduct is a Hopf algebra and that there is a Hopf homomorphism from permutations to label simple graphs.
基金The Research and Innovation Project for College Graduates of Jiangsu Province(No.CXLX_0094)the Natural Science Foundation of Chuzhou University(No.2010kj006Z)
文摘Let π be a group with a unit 1; H is a Hopf π- coalgebra and A is a right π-H-comodule algebra. First, the notion of a two-sided relative (A, H)-Hopf π-comodule is introduced; then it is obtained that Hom A H (M, N) H and HOMA(M, N) are isomorphic as right Hopf π-H-comodules, where Hom A H(M, N) denotes the space of right A-module fight H-comodule morphisms and HOMa (M, N) denotes the rational space of a space Hom A(M, N) of right A-module morphisms. Secondly, the structure theorem of endomorphism algebras of two-sided relative (A, H)-Hopf π--comodules is established; that is, End A H (M)#H and END A(M, N) are isomorphic as fight Hopf π-H-comodules and algebras.
基金The Scientific Research Innovation Project for College Graduates in Jiangsu Province(No.CXLX_0094)
文摘The concept of weak Hopf group coalgebras is a natural generalization of the notions of both weak Hopf algebras(quantum groupoids) and Hopf group coalgebras.Let π be a group.The Morita context is considered in the sense of weak Hopf π-coalgebras.Let H be a finite type weak Hopf π-coalgebra,and A a weak right π-H-comodule algebra.It is constructed that a Morita context connects A#H* which is a weak smash product and the ring of coinvariants AcoH.This result is the generalization of that of Wang's in the paper "Morita contexts,π-Galois extensions for Hopf π-coalgebras" in 2006.Furthermore,the result is important for constructing weak π-Galois extensions.
基金Specialized Research Fund for the Doctoral Program of Higher Education(No20060286006)the National Natural Science Foundation of China(No10871042)
文摘Let G be a group and (A, B) be a pair of multiplier Hopf algebras, where B is regular G-cograded. Let π be a crossing action of G on B, D^π=A^cop∝B=+p∈GDπ^p with Dπ^p=A^cop∝Bp, is the Drinfeld double of the pair (A, B), and then the deformation D^π becomes a multiplier Hopf algebra. B×A can be considered as a subalgebra of M(D^π×D^π), the image of element b×a in B×A is (1∝b)×(a∝1) in M(D^π×D^π). Let W =∑αWα∈ M(B×A) be a π-canonical multiplier for the pair (A, B) with Wα∈M(Bα×A) for all α∈G. The image of W in M(D^π×D^π)is a π-quasitriangular structure over D^π.
基金This work is supported by National Natural Science Foundation of Chinaby the excellent doctorate fund of Nanjing agricultural university
文摘This paper gives a sufficient and necessary condition for twisted products to be weak Hopf algebras, moreover, gives a description for smash products to be weak Hopf algebras. It respectively generalizes R.K.Molnar's major result and I.Boca's result.
基金This paper is supported by the Chinese National Natural Science Foundation
文摘Some basic properties of the antipode of an N0I-graded x-Hopf algebra are studied. Also, several equivalent conditions of an N0I-graded x-bialgebra (x-Hopf algebra) are given.
基金the Nature Science Foundation of China(19901009),Nature Science oundation of Guangdong Province(970472000463)
文摘The purpose of this paper is to present some dual properties of dual comodule. It turns out that dual comodule has universal property (cf.Theorem 2). Since (( )*,()°) is an adjoint pair (cf.Theorem 3), some nice properties of functor ( )° are obtained. Finally Theoram 4 provides that the cotensor product is the dual of the tensor product by (M (?)A N)°≌M°□A°N°. Moreover, the result Hom(M,JV)≌ComA°(N°,M°) is proved for finite related modules M, N over a reflexive algebra A.
基金Partially supported by the Specialized Research Fund for the Doctoral Program of Higher Education(20060286006)the National Natural Science Foundation of China(10571026)the Southeast University Fund(XJ0707273).
文摘The main aim of this paper is to study the twisting theory of weak Hopf algebras and give an equivalence between the (braided) monoidal categories of weak Hopf bimodules over the original and the twisted weak Hopf algebra to generalize the result from Oeckl (2000).
基金The NSF (200510476001) of Education Department of Henan Province.
文摘The Yetter-Drinfeld category of the Hopf algebra over a field is a prebraided category. In this paper we prove this result for the weak Hopf algebra. We study the smash product and smash coproduct, weak biproducts in the weak Hopf algebra over a field k. For a weak Hopf algebra A in left Yetter-Drinfeld category HHYD, we prove that the weak biproducts of A and H is a weak Hopf algebra.
基金Supported by the National Natural Science Foundation of China(11047030, 11171055) Supported by the Grant from China Scholarship Counci1(2011841026)
文摘In this paper, we categorify a Hom-associative algebra by imposing the Homassociative law up to some isomorphisms on the multiplication map and requiring that these isomorphisms satisfy the Pentagon axiom, and obtain a 2-Hom-associative algebra. On the other hand, we introduce the dual Hom-quasi-Hopf algebra and show that any dual Homquasi-Hopf algebras can be viewed as a 2-Hom-associative algebra.
文摘Let A be a commutative C^* -algebra. By the Gelfand-Naimark theorem, there exists a locally compact space G such that A is isomorphic to Co(G), the C^*-algebra of all complex continuous functions on G vanishing at infinity. The result is generalized to the ease of Hopf C^*-algebra, where G is altered by a locally compact group. Using the isomorphic representation, the counit ε and the antipode S of a commutative Hopf C^*-algebra are proposed.
基金Supported by the National Natural Science Foundation of China(11271319,11301126)
文摘In this paper, we study non-cosemisimple Hopf algebras through their underlying coalgebra structure. We introduce the concept of the maximal pointed subcoalgebra/Hopf sub- algebra. For a non-cosemisimple Hopf algebra A with the Chevalley property, if its diagram is a Nichols algebra, then the diagram of its maximal pointed Hopf subalgebra is also a Nichols algebra. When A is of finite dimension, we provide a necessary and sufficient condition for A's diagram equaling the diagram of its maximal pointed Hopf subalgebra.
基金Supported by the NSF of China(1097104910971052)+1 种基金the NSF of Hebei Province(A2008000135A2009000253)
文摘Let H be a finite-dimensional weak Hopf algebra and A a left H-module algebra with its invariant subalgebra A^H.We prove that the smash product A#H is an A-ring with a grouplike character, and give a criterion for A#H to be Frobenius over A. Using the theory of A-rings, we mainly construct a Morita context 〈A^H,A#H,A,A,τ,μ〉 connecting the smash product A#H and the invariant subalgebra A^H , which generalizes the corresponding results obtained by Cohen, Fischman and Montgomery.
文摘Let H be a finite Hopf C^* -algebra and H′be its dual Hopf algebra. Drinfeld's quantum double D(H) of H is a Hopf^*-algebra. There is a faithful positive linear functional θ on D(H). Through the associated Gelfand-Naimark-Segal (GNS) representation, D(H) has a faithful^* -representation so that it becomes a Hopf C^* -algebra. The canonical embedding map of H into D(H) is isometric.
基金Supported by ZJNSF(LY17A010015,LZ14A010001)NNSF(11171296),CSC
文摘In this paper, we study a Yetter-Drinfeld module V over a weak Hopf algebra H.Although the category of all left H-modules is not a braided tensor category, we can define a Yetter-Drinfeld module. Using this Yetter-Drinfeld modules V, we construct Nichols algebra B(V) over the weak Hopf algebra H, and a series of weak Hopf algebras. Some results of [8] are generalized.