期刊文献+
共找到8篇文章
< 1 >
每页显示 20 50 100
Co-Hopfian Modules of Generalized Inverse Polynomials 被引量:4
1
作者 Zhong Kui LIU Departmemt of Mathematics.Northwest Normal University,Lanzhou,730070,P.R.China E-mail:liuzk@nwnu,edu.cnYuan FAN Department of Economics,Northwest Normal Univevsity.Lanzhou,730070,P.R.China E-mail:gxsecfy@lz.gs.cninfo.net 《Acta Mathematica Sinica,English Series》 SCIE CSCD 2001年第3期431-436,共6页
Let R be an associative ring not necessarily possessing an identity and (S,≤) a strictly totally ordered monoid which is also artinian and satisfies that 0≤s for any s∈S.Assume that M is a left R-module having pr... Let R be an associative ring not necessarily possessing an identity and (S,≤) a strictly totally ordered monoid which is also artinian and satisfies that 0≤s for any s∈S.Assume that M is a left R-module having property (F).It is shown that M is a co-Hopfian left R-module if and only if [M<sup>S,≤</sup>]is a co-Hopfan left [[R<sup>S,≤</sup>]]-module. 展开更多
关键词 co-hopfian module Generalized power series Generalized inverse polynomials
原文传递
WGC2环 被引量:5
2
作者 成青松 魏俊潮 李立斌 《扬州大学学报(自然科学版)》 CAS CSCD 北大核心 2010年第2期6-9,共4页
证明了如下结果:①R是左WGC2环当且仅当每个左正则元是右可逆元;②R是左WGC2环当且仅当对每个左R-模M,每个a∈W(R),总有M=aM;③设R是左WGC2环,则Zl(R)■J(R);④R是co-Hopfian环当且仅当R是左WGC2环和直接有限环;⑤设R是左WGC2环和quasi-... 证明了如下结果:①R是左WGC2环当且仅当每个左正则元是右可逆元;②R是左WGC2环当且仅当对每个左R-模M,每个a∈W(R),总有M=aM;③设R是左WGC2环,则Zl(R)■J(R);④R是co-Hopfian环当且仅当R是左WGC2环和直接有限环;⑤设R是左WGC2环和quasi-normal环,则R是co-Hopfian环;⑥R是除环当且仅当R是无零因子环和左WGC2环. 展开更多
关键词 左WGC2环 直接有限环 quasi-normal环 co-hopfian
下载PDF
关于模序对的对偶性 被引量:1
3
作者 吴金明 周德旭 《福建师范大学学报(自然科学版)》 CAS CSCD 北大核心 2008年第6期5-8,共4页
作为推广,引入了Hopfian模序对与co-Hopfian模序对(M,N),广义Hopfian模序对与弱co-Hopfian模序对(M,N)的概念,并证明了这两个模序对构成了Morita对偶对.
关键词 模序对 co-hopfian Hopfian MORITA对偶
下载PDF
On Pseudo Small Injective Modules
4
作者 ZHAO Yu, e DU Xian-neng 《Chinese Quarterly Journal of Mathematics》 CSCD 2013年第4期532-538,共7页
The definition of principally pseudo injectivity motivates us to generalize tae notion of injectivity, noted SP pseudo injectivity. The aim of this paper is to investigate characterizations and properties of SP pseudo... The definition of principally pseudo injectivity motivates us to generalize tae notion of injectivity, noted SP pseudo injectivity. The aim of this paper is to investigate characterizations and properties of SP pseudo injective modules. Various results are devel- oped, many extending known results. As applications, we give some characterizations on Noetherian rings, QI rings, quasi-Frobenius rings. 展开更多
关键词 SP pseudo injective modules semiregular modules SP injective modules co-hopfian modules
下载PDF
相对于模类的qcH模
5
作者 赵路英 许飞飞 《甘肃科学学报》 2010年第1期51-53,共3页
给出了相对于模类的qcH模的概念,并讨论了其性质.
关键词 CO—Hopfian模 qcH模 χ—qcH模
下载PDF
广义逆多项式模的co-Hopf性质
6
作者 刘仲奎 樊元 《数学学报(中文版)》 SCIE CSCD 北大核心 2003年第3期493-496,共4页
设R是结合环(可以没有单位元),(S,≤)是严格全序幺半群,序≤是Artin的且对任意s∈S,有0≤s,则对任意具有性质(F)的左R-模M,[MS,≤]是co-Hopf左[[RS,≤]]一模当且仅当M是co-Hopf左R-模.
关键词 co-Hopf模 广义幂级数 广义逆多项式
原文传递
Extensions of Generalized Fitting Modules
7
作者 Xing Feng YAN Zhong Kui LIU 《Journal of Mathematical Research and Exposition》 CSCD 2010年第3期407-414,共8页
In this paper, we study the closeness of strongly (∞)-hopfian properties under some constructions such as the ring of Morita context, direct products, triangular matrix, fraction ring etc. Also, we prove that if M[... In this paper, we study the closeness of strongly (∞)-hopfian properties under some constructions such as the ring of Morita context, direct products, triangular matrix, fraction ring etc. Also, we prove that if M[X] is strongly hopfian (resp. strongly co-hopfian) in R[X]-Mod, then M is strongly hopfian (resp. strongly co-hopfian) in R-Mod. 展开更多
关键词 Generalized Fitting modules strongly hopfian modules strongly co-hopfian mod-ules.
下载PDF
关于模序对的广义Hopfian性
8
作者 郝拉拉 周德旭 《福建师范大学学报(自然科学版)》 CAS CSCD 北大核心 2013年第1期1-4,共4页
利用δ-多余子模与σ-本质子模分别引入δ-广义Hopfian(即δ-gH)模序对与σ-弱co-Hopfian(即σ-wcH)模序对,给出了δ-gH模序对的若干等价刻画,得到了模序对具有δ-gH性质是Morita不变性.在Morita对偶下,证明了δ-gH模序对与σ-wcH模序... 利用δ-多余子模与σ-本质子模分别引入δ-广义Hopfian(即δ-gH)模序对与σ-弱co-Hopfian(即σ-wcH)模序对,给出了δ-gH模序对的若干等价刻画,得到了模序对具有δ-gH性质是Morita不变性.在Morita对偶下,证明了δ-gH模序对与σ-wcH模序对构成了对偶对. 展开更多
关键词 广义Hopfian 弱co—Hopfian 模序对 MORITA对偶
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部