To experimentally determine the isothermal sections of Co-Mo-Zn ternary system at 600 and 450℃,the equilibrated alloy and diffusion couple methods were adopted by using scanning electron microscopy coupled with energ...To experimentally determine the isothermal sections of Co-Mo-Zn ternary system at 600 and 450℃,the equilibrated alloy and diffusion couple methods were adopted by using scanning electron microscopy coupled with energy-dispersive spectrometry,X-ray diffractometry and electron probe microanalysis.Experimental results show that there are six three-phase regions on the Co-Mo-Zn isothermal section at 600℃and nine three-phase regions on the Co-Mo-Zn isothermal section at 450℃.No ternary compound is found in these two isothermal sections.Both the maximum solubilities of Mo in the Co-Zn compounds(γ-Co5 Zn21,γ1-Co Zn7,γ2-Co Zn13 andβ1-Co Zn)and that of Zn inε-Co3 Mo are no more than 1.5 at.%.The maximum solubilities of Zn inμ-Co7 Mo6 are determined to be 2.1 at.%and 2.7 at.%at 600 and 450℃,respectively.In addition,the maximum solubilities of Co in MoZn7 and MoZn22 are 0.5 at.%and 4.7 at.%at 450℃,respectively.展开更多
This research manuscript reports the heavy metal accumulation in four marine seaweeds sp. 1)?Caulerpa sertlatioides (Cuba);2) Caulerpa cf. brachypus;(Bali, Indonesia);3) Undaria pinnatifida (West-Donegal, Ireland);4) ...This research manuscript reports the heavy metal accumulation in four marine seaweeds sp. 1)?Caulerpa sertlatioides (Cuba);2) Caulerpa cf. brachypus;(Bali, Indonesia);3) Undaria pinnatifida (West-Donegal, Ireland);4) Ulva lactuca (Easters-Scheldt, the Netherlands). Mechanical pressure at 10 bar of fresh seaweed fronds casu quo biomass in the laboratory delivered seaweed moisture which was analyzed by Inductively Coupled Plasma Spectroscopy (ICP)-techniques for heavy-metals = [HM], (Al, As, Cd, Co, Cr, Cu, Fe, Mo, Ni, Pb & Zn). Three important observations were made: 1) The [HM] in the seaweed moisture is higher than in the surrounding seawater which directs to mechanism(s) of bio-accumulation;2) The accumulation factor [AF] is varying per metallic-cation with an overall trend for our four seaweeds and sampling locations for [HM] are: As & Co & Cu: 5000 - 10,000 μg/l;Ni & Zn: 3000 - 5000 μg/l;Cd: 2000 - 3000 μg/l;Cr: 1000 - 2000 μg/l;Al: 200 - 1000 μg/l;Mo & Pb & Fe: 0 - 200 μg/l range. 3) Seaweed moisture detected that [HM]: Pb & Zn & Fe—which all three could not be detected in the seawater—supports the view that seaweeds have a preference in their bio-accumulation mechanism for these three HM. Major conclusion is in general that “overall” for the macro-elements Ca, Fe, K, Mg, Mn, Na, P & S in the moisture of the four seaweed species the concentration is lower in the seaweed species, or equals the concentration, in comparison to the surrounding sea water. For the HM (Al, As, Cd, Co, Cr, Cu, Mo, Ni, Pb & Zn) the opposite is the case species and is the concentration “overall” higher in the seaweed species in comparison to the surrounding sea water. Further topics addressed include strategies of irrigation of the Sahara desert with the moisture out of seaweeds under conditions of low anthropogenic influences.展开更多
目的建立微波消解-电感耦合等离子体质谱(ICP-MS)直接稀释测定脉络宁注射液中25种矿物质元素(Mg、Ca、Fe、Cu、Zn、Mn、Al、B、Ba、Co、Cr、K、Li、Mo、Na、Ni、P、Pb、Sr、Th、Ti、V、As、Cd和Hg)的方法。方法分别对微波消解条件...目的建立微波消解-电感耦合等离子体质谱(ICP-MS)直接稀释测定脉络宁注射液中25种矿物质元素(Mg、Ca、Fe、Cu、Zn、Mn、Al、B、Ba、Co、Cr、K、Li、Mo、Na、Ni、P、Pb、Sr、Th、Ti、V、As、Cd和Hg)的方法。方法分别对微波消解条件和测试条件进行考察;样品经微波消解后,采用电感耦合质谱仪测定25种矿物质元素,并对测定方法学进行考察。结果确定最佳消解条件为3步缓慢升温:400 W 80℃升温10 min,保留5 min;600 W 120℃升温10 min,保留5 min;900 W 200℃升温20 min,保留20 min;25种矿物质元素在各自的线性范围内线性关系良好,r≥0.999 6,精密度、稳定性和重复性试验的RSD均符合定量分析要求;加标回收率为94.7%~106.1%,RSD在0.34%~2.79%。脉络宁注射液中检测出Mg、Ca、Fe、Cu、Zn、Mn、Al、B、Ba、Co、Cr、K、Li、Mo、Na、Ni、P、Pb、Sr、Th、Ti、V,未检出As、Cd和Hg。结论该方法简便、迅速、准确,适用于脉络宁注射液中25种矿物质元素的同时测定。展开更多
基金Project(51771160)supported by the National Natural Science Foundation of ChinaProject(2018JJ4057)supported by the Scientific Research Fund of Hunan Provincial Science and Technology Department,China
文摘To experimentally determine the isothermal sections of Co-Mo-Zn ternary system at 600 and 450℃,the equilibrated alloy and diffusion couple methods were adopted by using scanning electron microscopy coupled with energy-dispersive spectrometry,X-ray diffractometry and electron probe microanalysis.Experimental results show that there are six three-phase regions on the Co-Mo-Zn isothermal section at 600℃and nine three-phase regions on the Co-Mo-Zn isothermal section at 450℃.No ternary compound is found in these two isothermal sections.Both the maximum solubilities of Mo in the Co-Zn compounds(γ-Co5 Zn21,γ1-Co Zn7,γ2-Co Zn13 andβ1-Co Zn)and that of Zn inε-Co3 Mo are no more than 1.5 at.%.The maximum solubilities of Zn inμ-Co7 Mo6 are determined to be 2.1 at.%and 2.7 at.%at 600 and 450℃,respectively.In addition,the maximum solubilities of Co in MoZn7 and MoZn22 are 0.5 at.%and 4.7 at.%at 450℃,respectively.
文摘This research manuscript reports the heavy metal accumulation in four marine seaweeds sp. 1)?Caulerpa sertlatioides (Cuba);2) Caulerpa cf. brachypus;(Bali, Indonesia);3) Undaria pinnatifida (West-Donegal, Ireland);4) Ulva lactuca (Easters-Scheldt, the Netherlands). Mechanical pressure at 10 bar of fresh seaweed fronds casu quo biomass in the laboratory delivered seaweed moisture which was analyzed by Inductively Coupled Plasma Spectroscopy (ICP)-techniques for heavy-metals = [HM], (Al, As, Cd, Co, Cr, Cu, Fe, Mo, Ni, Pb & Zn). Three important observations were made: 1) The [HM] in the seaweed moisture is higher than in the surrounding seawater which directs to mechanism(s) of bio-accumulation;2) The accumulation factor [AF] is varying per metallic-cation with an overall trend for our four seaweeds and sampling locations for [HM] are: As & Co & Cu: 5000 - 10,000 μg/l;Ni & Zn: 3000 - 5000 μg/l;Cd: 2000 - 3000 μg/l;Cr: 1000 - 2000 μg/l;Al: 200 - 1000 μg/l;Mo & Pb & Fe: 0 - 200 μg/l range. 3) Seaweed moisture detected that [HM]: Pb & Zn & Fe—which all three could not be detected in the seawater—supports the view that seaweeds have a preference in their bio-accumulation mechanism for these three HM. Major conclusion is in general that “overall” for the macro-elements Ca, Fe, K, Mg, Mn, Na, P & S in the moisture of the four seaweed species the concentration is lower in the seaweed species, or equals the concentration, in comparison to the surrounding sea water. For the HM (Al, As, Cd, Co, Cr, Cu, Mo, Ni, Pb & Zn) the opposite is the case species and is the concentration “overall” higher in the seaweed species in comparison to the surrounding sea water. Further topics addressed include strategies of irrigation of the Sahara desert with the moisture out of seaweeds under conditions of low anthropogenic influences.
文摘目的建立微波消解-电感耦合等离子体质谱(ICP-MS)直接稀释测定脉络宁注射液中25种矿物质元素(Mg、Ca、Fe、Cu、Zn、Mn、Al、B、Ba、Co、Cr、K、Li、Mo、Na、Ni、P、Pb、Sr、Th、Ti、V、As、Cd和Hg)的方法。方法分别对微波消解条件和测试条件进行考察;样品经微波消解后,采用电感耦合质谱仪测定25种矿物质元素,并对测定方法学进行考察。结果确定最佳消解条件为3步缓慢升温:400 W 80℃升温10 min,保留5 min;600 W 120℃升温10 min,保留5 min;900 W 200℃升温20 min,保留20 min;25种矿物质元素在各自的线性范围内线性关系良好,r≥0.999 6,精密度、稳定性和重复性试验的RSD均符合定量分析要求;加标回收率为94.7%~106.1%,RSD在0.34%~2.79%。脉络宁注射液中检测出Mg、Ca、Fe、Cu、Zn、Mn、Al、B、Ba、Co、Cr、K、Li、Mo、Na、Ni、P、Pb、Sr、Th、Ti、V,未检出As、Cd和Hg。结论该方法简便、迅速、准确,适用于脉络宁注射液中25种矿物质元素的同时测定。