期刊文献+
共找到3,671篇文章
< 1 2 184 >
每页显示 20 50 100
Accelerated intermetallic phase amorphization in a Mg-based high-entropy alloy powder
1
作者 Prince Sharma Purvam Mehulkumar Gandhi +4 位作者 Kerri-Lee Chintersingh Mirko Schoenitz Edward L.Dreizin Sz-Chian Liou Ganesh Balasubramanian 《Journal of Magnesium and Alloys》 SCIE EI CAS CSCD 2024年第5期1792-1798,共7页
We describe a novel mechanism for the synthesis of a stable high-entropy alloy powder from an otherwise immiscible Mg-Ti rich metallic mixture by employing high-energy mechanical milling.The presented methodology expe... We describe a novel mechanism for the synthesis of a stable high-entropy alloy powder from an otherwise immiscible Mg-Ti rich metallic mixture by employing high-energy mechanical milling.The presented methodology expedites the synthesis of amorphous alloy powder by strategically injecting entropic disorder through the inclusion of multi-principal elements in the alloy composition.Predictions from first principles and materials theory corroborate the results from microscopic characterizations that reveal a transition of the amorphous phase from a precursor intermetallic structure.This transformation,characterized by the emergence of antisite disorder,lattice expansion,and the presence of nanograin boundaries,signifies a departure from the precursor intermetallic structure.Additionally,this phase transformation is accelerated by the presence of multiple principal elements that induce severe lattice distortion and a higher configurational entropy.The atomic size mismatch of the dissimilar elements present in the alloy produces a stable amorphous phase that resists reverting to an ordered lattice even on annealing. 展开更多
关键词 High-entropy alloy High-energy milling Antisite disorder AMORPHOUS intermetallic
下载PDF
Porous TiFe_(2) intermetallic compound fabricated via elemental powder reactive synthesis
2
作者 Qian Zhao Zhenli He +3 位作者 Yuehui He Yue Qiu Zhonghe Wang Yao Jiang 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2024年第4期764-772,共9页
Porous intermetallics show potential in the field of filtration and separation as well as in the field of catalysis.Herein,porous Ti Fe2intermetallics were fabricated by the reactive synthesis of elemental powders.The... Porous intermetallics show potential in the field of filtration and separation as well as in the field of catalysis.Herein,porous Ti Fe2intermetallics were fabricated by the reactive synthesis of elemental powders.The phase transformation and pore formation of porous TiFe2intermetallics were investigated,and its corrosion behavior and hydrogen evolution reaction(HER)performance in alkali solution were studied.Porous TiFe2intermetallics with porosity in the range of 34.4%-56.4%were synthesized by the diffusion reaction of Ti and Fe elements,and the pore formation of porous TiFe2intermetallic compound is the result of a combination of the bridging effect and the Kirkendall effect.The porous TiFe2samples exhibit better corrosion resistance compared with porous 316L stainless steel,which is related to the formation of uniform nanosheets on the surface that hinder further corrosion,and porous TiFe2electrode shows the overpotential of 220.6 and 295.6 mV at 10 and 100 mA·cm-2,suggesting a good catalytic performance.The synthesized porous Fe-based intermetallic has a controllable pore structure as well as excellent corrosion resistance,showing its potential in the field of filtration and separation. 展开更多
关键词 TiFe2 intermetallic compound porous materials reactive synthesis corrosion behavior hydrogen evolution reaction
下载PDF
Optimization of chemistry and process parameters for control of intermetallic formation in Mg sludges
3
作者 Y.Fu G.G.Wang +4 位作者 A.Hu Y.Li K.B.Thacker J.P.Weiler H.Hu 《Journal of Magnesium and Alloys》 SCIE EI CAS CSCD 2024年第4期1431-1448,共18页
Intermetallic formation in sludge during magnesium(Mg)melting,holding and high pressure die casting practices is a very important issue.But,very often it is overlooked by academia,original equipment manufacturers(OEM)... Intermetallic formation in sludge during magnesium(Mg)melting,holding and high pressure die casting practices is a very important issue.But,very often it is overlooked by academia,original equipment manufacturers(OEM),metal ingot producers and even die casters.The aim of this study was to minimize the intermetallic formation in Mg sludge via the optimization of the chemistry and process parameters.The Al8Mn5 intermetallic particles were identified by the microstructure analysis based on the Al and Mn ratio.The design of experiment(DOE)technique,Taguchi method,was employed to minimize the intermetallic formation in the sludge of Mg alloys with various chemical compositions of Al,Mn,Fe,and different process parameters,holding temperature and holding time.The sludge yield(SY)and intermetallic size(IS)was selected as two responses.The optimum combination of the levels in terms of minimizing the intermetallic formation were 9 wt.%Al,0.15 wt.%Mn,0.001 wt.%(10 ppm)Fe,690℃ for the holding temperature and holding at 30 mins for the holding time,respectively.The best combination for smallest intermetallic size were 9 wt.%Al,0.15 wt.%Mn,0.001 wt.%(10 ppm)Fe,630℃ for the holding temperature and holding at 60 mins for the holding time,respectively.Three groups of sludge factors,Chemical Sludge(CSF),Physical Sludge(PSF)and Comprehensive Sludge Factors(and CPSF)were established for prediction of sludge yields and intermetallic sizes in Al-containing Mg alloys.The CPSF with five independent variables including both chemical elements and process parameters gave high accuracy in prediction,as the prediction of the PSF with only the two processing parameters of the melt holding temperature and time showed a relatively large deviation from the experimental data.The Chemical Sludge Factor was primarily designed for small ingot producers and die casters with a limited melting and holding capacity,of which process parameters could be fixed easily.The Physical Sludge Factor could be used for mass production with a single type of Mg alloy,in which the chemistry fluctuation might be negligible.In large Mg casting suppliers with multiple melting and holding furnaces and a number of Mg alloys in production,the Comprehensive Sludge Factor should be implemented to diminish the sludge formation. 展开更多
关键词 Magnesium sludge Al-Mn intermetallic OPTIMIZATION Taguchi method Sludge factor Chemical composition Process parameter
下载PDF
Ultrafine ordered L1_(2)-Pt-Co-Mn ternary intermetallic nanoparticles as high-performance oxygen-reduction electrocatalysts for practical fuel cells
4
作者 Enping Wang Liuxuan Luo +12 位作者 Yong Feng Aiming Wu Huiyuan Li Xiashuang Luo Yangge Guo Zehao Tan Fengjuan Zhu Xiaohui Yan Qi Kang Zechao Zhuang Daihui Yang Shuiyun Shen Junliang Zhang 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第6期157-165,I0005,共10页
The long-range periodically ordered atomic structures in intermetallic nanoparticles(INPs)can significantly enhance both the electrocatalytic activity and electrochemical stability toward the oxygen reduction reaction... The long-range periodically ordered atomic structures in intermetallic nanoparticles(INPs)can significantly enhance both the electrocatalytic activity and electrochemical stability toward the oxygen reduction reaction(ORR)compared to the disordered atomic structures in ordinary solid-solution alloy NPs.Accordingly,through a facile and scalable synthetic method,a series of carbon-supported ultrafine Pt_3Co_(x)Mn_(1-x)ternary INPs are prepared in this work,which possess the"skin-like"ultrathin Pt shells,the ordered L1_(2) atomic structure,and the high-even dispersion on supports(L1_(2)-Pt_3Co_(x)Mn_(1-x)/~SPt INPs/C).Electrochemical results present that the composition-optimized L1_(2)-Pt_3Co_(0.7)Mn_(0.3)/~SPt INPs/C exhibits the highest electrocata lytic activity among the series,which are also much better than those of the pristine ultrafine Pt/C.Besides,it also has a greatly enhanced electrochemical stability.In addition,the effects of annealing temperature and time are further investigated.More importantly,such superior ORR electrocatalytic performance of L1_(2)-Pt_3Co_(0.7)Mn_(0.3)/~SPt INPs/C are also well demonstrated in practical fuel cells.Physicochemical characterization analyses further reveal the major origins of the greatly enhanced ORR electrocata lytic performance:the Pt-Co-Mn alloy-induced geometric and ligand effects as well as the extremely high L1_(2) atomic-ordering degree.This work not only successfully develops a highly active and stable ordered ternary intermetallic ORR electrocatalyst,but also elucidates the corresponding"structure-function"relationship,which can be further applied in designing other intermetallic(electro)catalysts. 展开更多
关键词 Platinum Cobalt Manganese Oxygen reduction reaction Ordered intermetallic L1_(2)atomic structure Proton-exchange membrane fuel cell
下载PDF
First-principles Study of Mechanical and Electronic Properties of Co-Sn Intermetallics for Lithium Ion Battery Anode
5
作者 DONG Wei SHEN Ding +4 位作者 YANG Shaobin LIANG Bing WANG Xuelei LIU Yue LI Sinan 《Chemical Research in Chinese Universities》 SCIE CAS CSCD 2018年第2期235-240,共6页
The equilibrium structures, formation energy, mechanical properties and electronic properties of Co-Sn intermetallics have been systemically studied by first-principles study. The results show that the CoSn phase is m... The equilibrium structures, formation energy, mechanical properties and electronic properties of Co-Sn intermetallics have been systemically studied by first-principles study. The results show that the CoSn phase is more thermodynamically stable than any other stoichiometry of Co-Sn intermetallics. With the increasing of Co content in Co-Sn intermetallics, the mechanical properties change into brittle behavior from ductility character. Adding proper amount of Co to Co-Sn intermetallics can improve the cycle performance for lithium ion battery anode. However, high Co content will lead to a poor cycle performance for Co-Sn intermetallics. 展开更多
关键词 co-sn intermetallic Mechanical property Electronic property FIRST-PRINCIPLE Lithium ion battery
原文传递
Corrosion resistance of Mg-Al-LDH steam coating on AZ80 Mg alloy:Effects of citric acid pretreatment and intermetallic compounds 被引量:2
6
作者 Jin-Meng Wang Xiang Sun +6 位作者 Liang Song M.Bobby Kannan Fen Zhang Lan-Yue Cui Yu-Hong Zou Shuo-Qi Li Rong-Chang Zeng 《Journal of Magnesium and Alloys》 SCIE EI CAS CSCD 2023年第8期2967-2979,共13页
In this study,the effects of intermetallic compounds(Mg_(17)Al_(12)and Al_(8)Mn_(5))on the Mg-Al layered double hydroxide(LDH)formation mechanism and corrosion behavior of an in-situ LDH/Mg(OH)_(2)steam coatings on AZ... In this study,the effects of intermetallic compounds(Mg_(17)Al_(12)and Al_(8)Mn_(5))on the Mg-Al layered double hydroxide(LDH)formation mechanism and corrosion behavior of an in-situ LDH/Mg(OH)_(2)steam coatings on AZ80 Mg alloy were investigated.Citric acid(CA)was used to activate the alloy surface during the pretreatment process.The alloy was first pretreated with CA and then subjected to a hydrothermal process using ultrapure water to produce Mg-Al-LDH/Mg(OH)_(2)steam coating.The effect of different time of acid pretreatment on the activation of the intermetallic compounds was investigated.The microstructure and elemental composition of the obtained coatings were analyzed using FE-SEM,EDS,XRD and FT-IR.The corrosion resistance of the coated samples was evaluated using different techniques,i.e.,potentiodynamic polarization(PDP),electrochemical impedance spectrum(EIS)and hydrogen evolution test.The results indicated that the CA pretreatment significantly influenced the activity of the alloy surface by exposing the intermetallic compounds.The surface area fraction of Mg_(17)Al_(12)and Al_(8)Mn_(5)phases on the surface of the alloy was significantly higher after the CA pretreatment,and thus promoted the growth of the subsequent Mg-Al-LDH coatings.The CA pretreatment for 30 s resulted in a denser and thicker LDH coating.Increase in the CA pretreatment time significantly led to the improvement in corrosion resistance of the coated AZ80 alloy.The corrosion current density of the coated alloy was lower by three orders of magnitude as compared to the uncoated alloy. 展开更多
关键词 Magnesium alloy Citric acid pretreatment Steam coating Layered double hydroxide intermetallic compounds Corrosion resistance
下载PDF
An innovative joint interface design for reducing intermetallic compounds and improving joint strength of thick plate friction stir welded Al/Mg joints 被引量:2
7
作者 Yang Xu Liming Ke +3 位作者 Yuqing Mao Jifeng Sun Yaxiong Duan Limin Yu 《Journal of Magnesium and Alloys》 SCIE EI CAS CSCD 2023年第9期3151-3160,共10页
Friction stir welding of dissimilar Al/Mg thick plates still faces severe challenges, such as poor formability, formation of thick intermetallic compounds, and low joint strength. In this work, two joint configuration... Friction stir welding of dissimilar Al/Mg thick plates still faces severe challenges, such as poor formability, formation of thick intermetallic compounds, and low joint strength. In this work, two joint configurations, namely inclined butt(conventional butt) and serrated interlocking(innovative butt), are proposed for improving weld formation and joint quality. The results show that a continuous and straight intermetallic compound layer appears at the Mg side interface in conventional butt joint, and the maximum average thickness reaches about 60.1 μm.Additionally, the Mg side interface also partially melts, forming a eutectic structure composed of Mg solid solution and Al_(12)Mg_(17) phase.For the innovative butt joint, the Mg side interface presents the curved interlocking feature, and intermetallic compounds can be reduced to less than 10 μm. The joint strength of innovative butt joint is more than three times that of conventional butt joint. This is due to the interlocking effect and thin intermetallic compounds in the innovative joint. 展开更多
关键词 Al/Mg joint Friction stir welding Thick plate intermetallic compounds Joint strength
下载PDF
Characterizations on the instantaneously formed Ni-containing intermetallics in magnesium alloys 被引量:1
8
作者 Shuhui Lv Qiang Yang +1 位作者 Fanzhi Meng Jian Meng 《Journal of Magnesium and Alloys》 SCIE EI CAS CSCD 2023年第8期2991-2998,共8页
Instantaneous reactions of Al,Mn,Zn,Zr and Y with Ni by mixing the prepared Mg-8Al-0.4Mn,Mg-6Zn-2Y-0.5Zr and Mg-0.6Ni melts were investigated in this work to reveal the underlying mechanisms of their effects on the re... Instantaneous reactions of Al,Mn,Zn,Zr and Y with Ni by mixing the prepared Mg-8Al-0.4Mn,Mg-6Zn-2Y-0.5Zr and Mg-0.6Ni melts were investigated in this work to reveal the underlying mechanisms of their effects on the removal of Ni impurity.The results indicate three Ni-containing intermetallics,namely Al_(4)NiY,Al_(4)Ni(Y,Zr)and Al_(31)Ni_(2)Mn_(6).The former two phases present lath-like and have a relatively larger size(>20μm in length)than the latest one which is granular with the diameter of∼120 nm.This illustrates that Al and Y(/Zr)can efficiently remove Ni by forming Al_(4)NiY or Al_(4)Ni(Y,Zr)which would precipitate to the bottom of the melt.Furthermore,adding Y into Mg-Al based alloys can simultaneously remove Fe and Ni,which contributes their excellent corrosion resistance.Finally,this paper proposes two methods helped to efficiently remove Ni for both Mg-Al based alloys and Al-free Mg alloys,and both of them are also benefit to improve alloys’strength. 展开更多
关键词 Magnesium alloys intermetallicS Nickel Transmission electron microscopy(TEM) IMPURITY
下载PDF
Brittle and ductile characteristics of intermetallic compounds in magnesium alloys: A large-scale screening guided by machine learning 被引量:1
9
作者 Russlan Jaafreh Yoo Seong Kang Kotiba Hamad 《Journal of Magnesium and Alloys》 SCIE EI CAS CSCD 2023年第1期392-404,共13页
In the present work,we have employed machine learning(ML)techniques to evaluate ductile-brittle(DB)behaviors in intermetallic compounds(IMCs)which can form magnesium(Mg)alloys.This procedure was mainly conducted by a ... In the present work,we have employed machine learning(ML)techniques to evaluate ductile-brittle(DB)behaviors in intermetallic compounds(IMCs)which can form magnesium(Mg)alloys.This procedure was mainly conducted by a proxy-based method,where the ratio of shear(G)/bulk(B)moduli was used as a proxy to identify whether the compound is ductile or brittle.Starting from compounds information(composition and crystal structure)and their moduli,as found in open databases(AFLOW),ML-based models were built,and those models were used to predict the moduli in other compounds,and accordingly,to foresee the ductile-brittle behaviors of these new compounds.The results reached in the present work showed that the built models can effectively catch the elastic moduli of new compounds.This was confirmed through moduli calculations done by density functional theory(DFT)on some compounds,where the DFT calculations were consistent with the ML prediction.A further confirmation on the reliability of the built ML models was considered through relating between the DB behavior in MgBe_(13) and MgPd_(2),as evaluated by the ML-predicted moduli,and the nature of chemical bonding in these two compounds,which in turn,was investigated by the charge density distribution(CDD)and electron localization function(ELF)obtained by DFT methodology.The ML-evaluated DB behaviors of the two compounds was also consistent with the DFT calculations of CDD and ELF.These findings and confirmations gave legitimacy to the built model to be employed in further prediction processes.Indeed,as examples,the DB characteristics were investigated in IMCs that might from in three Mg alloy series,involving AZ,ZX and WE. 展开更多
关键词 Mg alloys intermetallic compounds Ductile-brittle Machine learning Algorithm Features DFT
下载PDF
PtCoNi ternary intermetallic compounds anchored on Co,Ni and N co-doped mesoporous carbon:Synergetic effect between PtCoNi nanoparticles and doped mesoporous carbon promotes the catalytic activity
10
作者 Chaozhong Li Weiyue Zhao +10 位作者 Xueyi Lu Zhangsen Chen Bing Han Xiaorong Zhang Jiaxiang Chen Yijia Shao Junlang Huo Yuexiang Zhu Yonghong Deng Shuhui Sun Shijun Liao 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2023年第3期340-349,I0010,共11页
Highly active and robust electrocatalysts are desired for proton exchange membrane fuel cells.Pt-based intermetallic compounds(IMCs) have been recognized as one of the most promising low-platinum catalysts for fuel ce... Highly active and robust electrocatalysts are desired for proton exchange membrane fuel cells.Pt-based intermetallic compounds(IMCs) have been recognized as one of the most promising low-platinum catalysts for fuel cells(FCs).Herein,we report a high-performance IMCs by anchoring ordered PtCoNi ternary nanoparticles on the N,Co and Ni co-doped dodecahedral mesoporous carbon(DMC).While the introduced Co and Ni participate in the formation of PtCoNi IMCs,some of them are doped in the mesoporous carbon and coordinated by N to form Co-N_(y)/Ni-N_(z)dual active centers,which further enhances the electrocatalytic activity towards oxygen reduction reaction.Moreover,the addition of Ni results in a negative shift of the d-band center of Pt as compared to the Pt/DMC and Pt_(3)Co/DMC,making it easier to adsorb oxygen on the surface.As expected,our optimal sample Pt_(3)Co_(0.7)Ni_(0.3)/DMC exhibits excellent performance with mass activity and specific activity of 1.32 A mgPt-1and 1.98 mA cm^(-2)at 0.9 V,which are 7.33and 6.19 times that of commercial Pt/C,respectively.The Pt_(3)Co_(0.7)Ni_(0.3)/DMC also reveals much better cathodic performance in an H2-air single fuel cell than commercial Pt/C catalyst with a power density of0.802 W cm^(-2).This work provides critical sights into constructing efficient catalysts by ternary intermetallic strategy and synergetic effect between active components and support. 展开更多
关键词 Ternary intermetallic compounds Oxygen reduction reaction Fuel cell CATALYST
下载PDF
High-entropy L1_(2)-Pt(FeCoNiCuZn)_(3) intermetallics for ultrastable oxygen reduction reaction
11
作者 Qian Zhang Tao Shen +5 位作者 Min Song Shuang Wang Jialin Zhang Xiao Huang Shanfu Lu Deli Wang 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2023年第11期158-166,I0004,共10页
Enhancing the stability of Pt-based electrocatalysts for the sluggish cathodic oxygen reduction reaction(ORR)is critical for proton exchange membrane fuel cells(PEMFCs).Herein,high-entropy intermetallic(HEI)L1_(2)-Pt(... Enhancing the stability of Pt-based electrocatalysts for the sluggish cathodic oxygen reduction reaction(ORR)is critical for proton exchange membrane fuel cells(PEMFCs).Herein,high-entropy intermetallic(HEI)L1_(2)-Pt(FeCoNiCuZn)3is designed for durable ORR catalysis.Benefiting from the unique HEI structure and the enhanced intermetallic phase stability,Pt(FeCoNiCuZn)3/C nanoparticles demonstrate significantly improved stability over Pt/C and PtCu_(3)/C catalysts.The Pt(FeCoNiCuZn)3/C exhibits a negligible decay of the half-wave potential during 30,000 potential cycles from 0.6 to 1.0 V,whereas Pt/C and PtCu_(3)/C are negatively shifted by 46 and 36 m V,respectively.Even after 10,000 cycles at potential up to 1.5 V,the mass activity of Pt(FeCoNiCuZn)3/C still shows~70%retention.As evidenced by the structural characterizations,the HEI structure of Pt(FeCoNiCuZn)3/C is well maintained,while PtCu_(3)/C nanoparticles undergo severe Cu leaching and particle growth.In addition,when assembled Pt(FeCoNiCuZn)3/C as the cathode in high-temperature PEMFC of 160℃,the H_(2)-O_(2)fuel cell delivers almost no degradation even after operating for 150 h,demonstrating the potential for fuel cell applications.This work provides a facile design strategy for the development of high-performance ultrastable electrocatalysts. 展开更多
关键词 High-entropy intermetallics Pt-based electrocatalysts Oxygen reduction reaction High stability
下载PDF
Computational Modeling of Intergranular Crack Propagation in an Intermetallic Compound Layer
12
作者 Tong An Rui Zhou +3 位作者 Fei Qin Pei Chen Yanwei Dai Yanpeng Gong 《Computer Modeling in Engineering & Sciences》 SCIE EI 2023年第5期1481-1502,共22页
A micromechanical model is presented to study the initiation and propagation of microcracks of intermetallic compounds(IMCs)in solder joints.The effects of the grain aggregate morphology,the grain boundary defects and... A micromechanical model is presented to study the initiation and propagation of microcracks of intermetallic compounds(IMCs)in solder joints.The effects of the grain aggregate morphology,the grain boundary defects and the sensitivity of the various cohesive zone parameters in predicting the overall mechanical response are investigated.The overall strength is predominantly determined by the weak grain interfaces;both the grain aggregate morphology and the weak grain interfaces control the crack configuration;the different normal and tangential strengths of grain interfaces result in different intergranular cracking behaviors and play a critical role in determining the macroscopic mechanical response of the system. 展开更多
关键词 Cohesive zone element intergranular cracking polycrystalline material intermetallic compound(IMC)
下载PDF
Development of 3D bicontinuous metal-intermetallic composites through subsequent alloying process after liquid metal dealloying
13
作者 Jee Eun Jang Jihye Seong +1 位作者 Soo-Hyun Joo Sung Hyuk Park 《Journal of Magnesium and Alloys》 SCIE EI CAS CSCD 2023年第11期4274-4281,共8页
This study presents a novel process for the fabrication of metal-intermetallic composites with a 3D bicontinuous structure, achieved through a combination of liquid metal dealloying(LMD) and subsequent alloying. Initi... This study presents a novel process for the fabrication of metal-intermetallic composites with a 3D bicontinuous structure, achieved through a combination of liquid metal dealloying(LMD) and subsequent alloying. Initially, porous Ti structures are produced using the LMD process, followed by immersion in a molten Mg-3Al(wt%) metal. Due to the higher thermodynamic miscibility of Al with Ti compared to Mg, the concentration of Al in the Ti matrix increases as the immersion time increases. This results in a sequential phase transition within the Ti matrix: α-Ti → Ti_(3)Al → Ti Al. The phase transition considerably affects the hardness and strength of the composite material,with the Mg-Ti_(3)Al-Ti Al composite exhibiting a maximum hardness nearly twice as high as that of the conventional Mg-Ti composite. This innovative process holds potential for the development of various bicontinuous metal-intermetallic composites. 展开更多
关键词 Liquid metal dealloying Subsequent alloying Metal–intermetallic composite 3D bicontinuous structure HARDNESS
下载PDF
Sub-nanometer Pt_(2)In_(3) intermetallics as ultra-stable catalyst for propane dehydrogenation
14
作者 Yanan Xing Guiyue Bi +11 位作者 Xiaoli Pan Qike Jiang Yuanlong Tan Yang Su Leilei Kang Bonan Li Lin Li Aiqin Wang Jingyuan Ma Xiaofeng Yang Xiao Yan Liu Tao Zhang 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2023年第8期304-312,I0009,共10页
Pt-based catalysts are the typical industrial catalysts for propane dehydrogenation(PDH),which still suffer from insufficient lo ng-term durability due to the structu ral instability and coke deposition.A commercial ... Pt-based catalysts are the typical industrial catalysts for propane dehydrogenation(PDH),which still suffer from insufficient lo ng-term durability due to the structu ral instability and coke deposition.A commercial γ-Al_(2)O_(3) supported thermally robust sub-nanometer Pt2In3intermetallic catalyst with atomically ordered structure and rigorously separated Pt single atoms was fabricated,which showed outstanding robustness in 240 h long-term operation at 600℃ with the deactivation rate constant kdas low as0.00078 h^(-1), ranking among the lowest reported values.Based on various in situ characterizations and theoretical calculations,it was proved that the catalyst stability not only resulted from the separated Pt single-atom sites but also significantly affected by the distance of adjacent Pt atoms.An increasing distance to 3.25 A in the Pt_(2)In_(3)could induce a weak π-adsorption configuration of propylene on Pt sites,which facilitated the desorption of propylene and restrained the side reactions like coking. 展开更多
关键词 Propane dehydrogenation PROPYLENE Pt-In catalyst intermetallic compounds Pt_(2)ln_(3)
下载PDF
Intermetallic Getters Reactants for Vacuum Applications
15
作者 Konstantin Chuntonov 《Materials Sciences and Applications》 2023年第3期222-239,共18页
The present work continues a series of publications devoted to the study of the sorption properties of reactive alloys based on IIA metals and the development of advanced getter materials for gas and vacuum technologi... The present work continues a series of publications devoted to the study of the sorption properties of reactive alloys based on IIA metals and the development of advanced getter materials for gas and vacuum technologies. This publication attempts to answer the current challenges in the field of gas sorption associated with the emergence of new vacuum products such as vacuum insulated glasses, electronic systems, cryogenic devices, etc. An analysis of the problems that arise here, as well as the results of sorption measurements, carried out with the participation of intermetallic phases of the composition CaLi<sub>2</sub> and Ca<sub>0.33</sub>Li<sub>0.48</sub>Mg<sub>0.19</sub>, show that the best getter support for these new hermetically sealed products can be provided by intermetallic compounds formed in systems Li-IIA metals. Intermetallic phases of this family are easy to manufacture and demonstrate outstanding service characteristics: their specific sorption capacity is recorded high, exceeding traditional gas sorbents in this respect by at least an order of magnitude;the kinetics of gas capturing is set at the stage of alloy production, i.e., is adjustable;the temporary resistance of these phases to atmospheric gases allows to install the getter at its workplace in air, without further thermal activation. The sorption superiority of reactive intermetallics is explained by their special sorption mechanism: the gas/metal interaction is formed here as a combination of two processes, continuous growth of reaction products on a metallic surface and corrosion decay of brittle intermetallic phase under mechanical forces, which feeds the chemical reaction with a fresh surface. The advantages of sorption processes of this new type are undoubted and significant: compared with the conventional sorbents, an intermetallic getter reactant solves two important problems;it reduces production costs and increases the sorption yield. 展开更多
关键词 Vacuum Devices Gas Sorption GETTERS intermetallic Phases CORROSION
下载PDF
Microstructure and wear resistance of laser clad TiB-TiC/TiNi-Ti_2Ni intermetallic coating on titanium alloy 被引量:17
16
作者 冯淑容 汤海波 +1 位作者 张述泉 王华明 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2012年第7期1667-1673,共7页
A wear resistant TiB-TiC reinforced TiNi-Ti2Ni intermetallic matrix composite coating(TiB-TiC/TiNi-Ti2Ni) was prepared on Ti-6.5Al-2Zr-1Mo-1V titanium alloy by the laser cladding process using Ti+Ni+B4C powder ble... A wear resistant TiB-TiC reinforced TiNi-Ti2Ni intermetallic matrix composite coating(TiB-TiC/TiNi-Ti2Ni) was prepared on Ti-6.5Al-2Zr-1Mo-1V titanium alloy by the laser cladding process using Ti+Ni+B4C powder blends as the precursor materials.Microstructure and worn surface morphologies of the coating were characterized by optical microscopy(OM),scan electron microscopy(SEM),X-ray diffraction(XRD),energy dispersive X-ray analysis(EDS) and atomic force microscopy(AFM).Wear resistance of the coating was evaluated under dry sliding wear test condition at room temperature.The results indicate that the laser clad coating has a unique microstructure composed of flower-like TiB-TiC eutectic ceramics uniformly distributed in the TiNi-Ti2Ni dual-phase intermetallic matrix.The coating exhibits an excellent wear resistance because of combined action of hard TiB-TiC eutectic ceramic reinforcements and ductile TiNi-Ti2Ni dual-phase intermetallic matrix. 展开更多
关键词 intermetallic composite coating laser cladding wear
下载PDF
Effect of Si on growth kinetics of intermetallic compounds during reaction between solid iron and molten aluminum 被引量:13
17
作者 尹付成 赵满秀 +2 位作者 刘永雄 韩炜 李智 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2013年第2期556-561,共6页
The effect of Si on the growth kinetics of intermetallic compounds during the reaction of solid iron and molten aluminum was investigated with a scanning electron microscope coupled with an energy dispersive X-ray spe... The effect of Si on the growth kinetics of intermetallic compounds during the reaction of solid iron and molten aluminum was investigated with a scanning electron microscope coupled with an energy dispersive X-ray spectroscope, and hot-dip aluminized experiments. The results show that the intermetallic layer is composed of major Fe2Al5 and minor FeAl3. The Al-Fe-Si ternary phase, rl/rg, is formed in the Fe2Al5 layer. The tongue-like morphology of the Fe2Als layer becomes less distinct and disappears finally as the content of Si in aluminum bath increases. Si in the bath improves the prohibiting ability to the growth of Fe2Als and FeAl3. When the contents of Si are 0, 0.5%, 1.0%, 1.5%, 2.0% and 3.0%, the activation energies of Fe2Al5 are evaluated to be 207, 186, 169, 168, 167 and 172 kJ/mol, respectively. The reduction of the activation energy might result from the lattice distortion caused by Si atom penetrating into the Fe2Al5 phase. When Si atom occupies the vacancy site, it blocks easy diffusion path and results in the disappearance of tongue-like morphology. 展开更多
关键词 intermetallic compound Fe-Al system growth kinetics activation energy SI hot-dip aluminizing diffusion reaction
下载PDF
Effect of ultrasonic vibration on Fe-containing intermetallic compounds of hypereutectic Al-Si alloys with high Fe content 被引量:13
18
作者 林冲 吴树森 +2 位作者 钟鼓 万里 安萍 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2013年第5期1245-1252,共8页
The Fe-containing intermetallic compounds with high melting point in hypereutectic Al-Si alloys can improve the heat resistance and wear resistance at elevated temperatures. However, the long needle-like Fe-containing... The Fe-containing intermetallic compounds with high melting point in hypereutectic Al-Si alloys can improve the heat resistance and wear resistance at elevated temperatures. However, the long needle-like Fe-containing compounds in the alloys produced by conventional casting process are detrimental to the strength of matrix. The effect of ultrasonic vibration (USV) on the morphology change of Fe-containing intermetallic compounds in the hypereutectic Al-17Si-xFe (x=2, 3, 4, 5) alloys was systematically studied. The results show that, the Fe-containing intermetallic compounds are mainly composed of long needle-like β-Al5FeSi phase with a small amount of plate-like δ-Al4FeSi2 phase in Al-17Si-2Fe alloy produced by conventional casting process. With the increase of Fe content from 2% to 5% in the alloys, the amount of plate-like or coarse needle-like δ-Al4FeSi2 phase increases while the amount of long needle-like β-Al5FeSi phases decreases. In Al-17Si-5Fe alloy, the Fe-containing intermetallic compounds exist mainly as coarse needle-like δ-Al4FeSi2 phase. After USV treatment, the Fe-containing compounds in the Al-17Si-xFe alloys are refined and exist mainly as δ-Al4FeSi2 particles, with average grain size ranging from 26 μm to 37 μm, and only a small amount of β-Al5FeSi phases remain. The mechanism of USV on the morphology of Fe-containing intermetallic compounds was also discussed. 展开更多
关键词 hypereutectic Al-Si alloy ultrasonic vibration Fe-containing intermetallic compound
下载PDF
Effect of Fe and Mo additions on microstructure and mechanical properties of TiAl intermetallics 被引量:9
19
作者 邱从章 刘咏 +3 位作者 黄岚 张伟 刘彬 卢斌 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2012年第3期521-527,共7页
The ductility of TiAl intermetallics can be improved through stabilizing the ductile β phase.New β-stabilized Ti-45Al-xFe-yMo(x,y=1,2,3,4) alloys were designed through adding the β stabilizing elements Fe and Mo.... The ductility of TiAl intermetallics can be improved through stabilizing the ductile β phase.New β-stabilized Ti-45Al-xFe-yMo(x,y=1,2,3,4) alloys were designed through adding the β stabilizing elements Fe and Mo.The microstructural evolution and deformation behavior of the Ti-45Al-xFe-yMo alloys were investigated.The results show that the amount of β(B2) phase is increased with the increase of alloying elements.Mo shows a higher capability for stabilizing the β phase than Fe.In the optimized Ti-45Al-3Fe-2Mo alloy,the grains are significantly refined to about 12 μm,and this alloy shows a very good hot ductility at the elevated temperature. 展开更多
关键词 TiAl intermetallics FE MO β phase grain refinement
下载PDF
Intermetallic phase evolution of 5059 aluminum alloy during homogenization 被引量:9
20
作者 蒋海春 叶凌英 +3 位作者 张新明 顾刚 张盼 吴豫陇 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2013年第12期3553-3560,共8页
Intermetallic phase evolution of 5059 aluminum alloy during homogenization was investigated by means of optical microscopy (OM), scanning electron microscopy (SEM), transmission electron microscopy (TEM), energy... Intermetallic phase evolution of 5059 aluminum alloy during homogenization was investigated by means of optical microscopy (OM), scanning electron microscopy (SEM), transmission electron microscopy (TEM), energy dispersive spectrometry (EDS), differential scanning calorimetry (DSC) and X-ray diffraction analysis (XRD). The results show that severe dendritic segregation exists in as-cast alloy. The dissolvable intermetallic phases in as-cast alloy consist of Zn-and Cu-rich non-equilibriumβ(Al3Mg2) phase, Fe-rich eutectic Al6Mn phase and equilibrium Mg2Si phase. During the homogenization, Zn- and Cu-rich non-equilibrium β (Al3Mg2) phase, Fe-rich eutectic Al6Mn phase and equilibrium Mg2Si gradually dissolve into matrix. Fine dispersed β(Al3Mg2) particles and rod-shaped Al6Mn particles form in the Al matrix after homogenization. The proper homogenization processing is at 450 °C for 24 h, which is consistent with the results of homogenizing kinetic analysis. 展开更多
关键词 intermetallic phase 5059 aluminum alloy HOMOGENIZATION MICROSTRUCTURE EVOLUTION
下载PDF
上一页 1 2 184 下一页 到第
使用帮助 返回顶部