期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
Co-liquefaction of Coal and Used Tire in Supercritical Water 被引量:2
1
作者 Kwanruthai Onsri Pattarapan Prasassarakich Somkiat Ngamprasertsith 《Energy and Power Engineering》 2010年第2期95-102,共8页
The co-liquefaction of lignite coal and used tire was performed in a 250-ml batch reactor, in supercritical water under a nitrogen atmosphere to investigate the effects of temperature (380-440℃), water/feedstock rati... The co-liquefaction of lignite coal and used tire was performed in a 250-ml batch reactor, in supercritical water under a nitrogen atmosphere to investigate the effects of temperature (380-440℃), water/feedstock ratio (4/1-10/1 (wt./wt.)) and the % used tire content in the feedstock (0-100 wt.%) on the conversion efficiency, liquid yield and oil composition attained. The maximum conversion and oil yield were 67 and 50%, respectively, obtained at 400℃ at 1 min, with water/feedstock ratio of 10/1 and 80% used tire content. The distillation characteristics of the oil products, analyzed by simulated distillation gas chromatography, revealed that the oil composition depended significantly on the reaction temperature. The co-liquefaction of coal and used tire yielded a synergistically increased level of oil production. Moreover, the total conversion level obtained with co-liquefaction alone was almost equal to those obtained in the presence of either Fe2O3 or NiMo as catalysts, under the same conditions. Therefore, supercritical water is a good medium for the dissolution of the volatile matter from a coal and used tire matrix. 展开更多
关键词 co-liquefaction COAL USED TIRE SUPERCRITICAL WATER
下载PDF
Co-liquefaction of Cotton Seed and Flos Populi in Sub-critical Water/Ethanol Solvent for Bio-oil with Medical Stone Based Additives
2
作者 Wang Baofeng Yan Xiaomin Cheng Fangqin 《China Petroleum Processing & Petrochemical Technology》 SCIE CAS 2020年第3期56-64,共9页
The co-liquefaction behaviors of cotton seed(CS)and flos populi(FP)were investigated in the sub-critical water/ethanol mixed solvent using the medical stone(MS)based additives.Oil products were characterized using FTI... The co-liquefaction behaviors of cotton seed(CS)and flos populi(FP)were investigated in the sub-critical water/ethanol mixed solvent using the medical stone(MS)based additives.Oil products were characterized using FTIR,GC-MS,1HNMR,and 13CNMR techniques.The test results showed that the synergistic effect of co-liquefaction was obvious when the ratio of cotton seed and flospopuli was 1:1 without additives.The additives,such as 12-phosphotungstic acid(PW12),HZSM-5,PW12/HZSM-5 and modified medical stone(MS),PW12/MS,Ni/MS,Co/MS,Mo/MS and Co-Mo/MS,could increase the bio-oil yield;and the modified MS resulted in higher liquefied oil yield than that achieved by MS.Furthermore,additives such as Ni/MS,Mo/MS,and Co-Mo/MS also could increase the yield of aliphatic hydrocarbons in liquefied oil.The addition of Co-Mo/MS could lead to a highest liquefied oil yield of 28.8%,while the additive of PW12/HZSM-5 could result in a highest total conversion of 81.6%.Results also revealed that additives,such as PW12/MS,PW12,PW12/HZSM-5,Ni/MS,Co/MS,Mo/MS,and Co-Mo/MS,could increase the H2 production and decrease the CO2 production in gas products. 展开更多
关键词 cotton seed flospopuli sub-critical water/ethanol co-liquefaction BIO-OIL
下载PDF
Research on co-liquefaction of highly volatile coal and waste polymer
3
作者 宋书宇 赵鸣 《Journal of Coal Science & Engineering(China)》 2002年第1期100-103,共4页
In the paper, the reaction pattern and technological requirement of the co-processing of coal with waste polymer are studied in a 50 ml reactor. The results showed that adding waste polymers during the liquefaction of... In the paper, the reaction pattern and technological requirement of the co-processing of coal with waste polymer are studied in a 50 ml reactor. The results showed that adding waste polymers during the liquefaction of coal could effectively improve coal conversion, increase oil yield, reduce the cost of hydrogen, and require less strict reaction conditions. 展开更多
关键词 COAL waste polymers co-liquefaction
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部