期刊文献+
共找到1,319篇文章
< 1 2 66 >
每页显示 20 50 100
Machine learning prediction model for gray-level co-occurrence matrix features of synchronous liver metastasis in colorectal cancer
1
作者 Kai-Feng Yang Sheng-Jie Li +1 位作者 Jun Xu Yong-Bin Zheng 《World Journal of Gastrointestinal Surgery》 SCIE 2024年第6期1571-1581,共11页
BACKGROUND Synchronous liver metastasis(SLM)is a significant contributor to morbidity in colorectal cancer(CRC).There are no effective predictive device integration algorithms to predict adverse SLM events during the ... BACKGROUND Synchronous liver metastasis(SLM)is a significant contributor to morbidity in colorectal cancer(CRC).There are no effective predictive device integration algorithms to predict adverse SLM events during the diagnosis of CRC.AIM To explore the risk factors for SLM in CRC and construct a visual prediction model based on gray-level co-occurrence matrix(GLCM)features collected from magnetic resonance imaging(MRI).METHODS Our study retrospectively enrolled 392 patients with CRC from Yichang Central People’s Hospital from January 2015 to May 2023.Patients were randomly divided into a training and validation group(3:7).The clinical parameters and GLCM features extracted from MRI were included as candidate variables.The prediction model was constructed using a generalized linear regression model,random forest model(RFM),and artificial neural network model.Receiver operating characteristic curves and decision curves were used to evaluate the prediction model.RESULTS Among the 392 patients,48 had SLM(12.24%).We obtained fourteen GLCM imaging data for variable screening of SLM prediction models.Inverse difference,mean sum,sum entropy,sum variance,sum of squares,energy,and difference variance were listed as candidate variables,and the prediction efficiency(area under the curve)of the subsequent RFM in the training set and internal validation set was 0.917[95%confidence interval(95%CI):0.866-0.968]and 0.09(95%CI:0.858-0.960),respectively.CONCLUSION A predictive model combining GLCM image features with machine learning can predict SLM in CRC.This model can assist clinicians in making timely and personalized clinical decisions. 展开更多
关键词 Colorectal cancer Synchronous liver metastasis Gray-level co-occurrence matrix Machine learning algorithm Prediction model
下载PDF
Artificial intelligence on diabetic retinopathy diagnosis: an automatic classification method based on grey level co-occurrence matrix and naive Bayesian model 被引量:6
2
作者 Kai Cao Jie Xu Wei-Qi Zhao 《International Journal of Ophthalmology(English edition)》 SCIE CAS 2019年第7期1158-1162,共5页
AIM: To develop an automatic tool on screening diabetic retinopathy(DR) from diabetic patients.METHODS: We extracted textures from eye fundus images of each diabetes subject using grey level co-occurrence matrix metho... AIM: To develop an automatic tool on screening diabetic retinopathy(DR) from diabetic patients.METHODS: We extracted textures from eye fundus images of each diabetes subject using grey level co-occurrence matrix method and trained a Bayesian model based on these textures. The receiver operating characteristic(ROC) curve was used to estimate the sensitivity and specificity of the Bayesian model.RESULTS: A total of 1000 eyes fundus images from diabetic patients in which 298 eyes were diagnosed as DR by two ophthalmologists. The Bayesian model was trained using four extracted textures including contrast, entropy, angular second moment and correlation using a training dataset. The Bayesian model achieved a sensitivity of 0.949 and a specificity of 0.928 in the validation dataset. The area under the ROC curve was 0.938, and the 10-fold cross validation method showed that the average accuracy rate is 93.5%.CONCLUSION: Textures extracted by grey level cooccurrence can be useful information for DR diagnosis, and a trained Bayesian model based on these textures can be an effective tool for DR screening among diabetic patients. 展开更多
关键词 GREY level co-occurrence matrix Bayesian textures artificial INTELLIGENCE receiver operating characteristiccurve DIABETIC RETINOPATHY
下载PDF
Quantum and classical correlations for a two-qubit X structure density matrix 被引量:3
3
作者 丁邦福 王小云 赵鹤平 《Chinese Physics B》 SCIE EI CAS CSCD 2011年第10期23-29,共7页
We derive explicit expressions for quantum discord and classical correlation for an X structure density matrix. Based on the characteristics of the expressions, the quantum discord and the classical correlation are ea... We derive explicit expressions for quantum discord and classical correlation for an X structure density matrix. Based on the characteristics of the expressions, the quantum discord and the classical correlation are easily obtained and compared under different initial conditions using a novel analytical method. We explain the relationships among quantum discord, classical correlation, and entanglement, and further find that the quantum discord is not always larger than the entanglement measured by concurrence in a general two-qubit X state. The new method, which is different from previous approaches, has certain guiding significance for analysing quantum discord and classical correlation of a two-qubit X state, such as a mixed state. 展开更多
关键词 quantum and classical mutual information X structure density matrix quantum dis-cord classical correlation entanglement
下载PDF
Binary Image Steganalysis Based on Distortion Level Co-Occurrence Matrix 被引量:2
4
作者 Junjia Chen Wei Lu +4 位作者 Yuileong Yeung Yingjie Xue Xianjin Liu Cong Lin Yue Zhang 《Computers, Materials & Continua》 SCIE EI 2018年第5期201-211,共11页
In recent years,binary image steganography has developed so rapidly that the research of binary image steganalysis becomes more important for information security.In most state-of-the-art binary image steganographic s... In recent years,binary image steganography has developed so rapidly that the research of binary image steganalysis becomes more important for information security.In most state-of-the-art binary image steganographic schemes,they always find out the flippable pixels to minimize the embedding distortions.For this reason,the stego images generated by the previous schemes maintain visual quality and it is hard for steganalyzer to capture the embedding trace in spacial domain.However,the distortion maps can be calculated for cover and stego images and the difference between them is significant.In this paper,a novel binary image steganalytic scheme is proposed,which is based on distortion level co-occurrence matrix.The proposed scheme first generates the corresponding distortion maps for cover and stego images.Then the co-occurrence matrix is constructed on the distortion level maps to represent the features of cover and stego images.Finally,support vector machine,based on the gaussian kernel,is used to classify the features.Compared with the prior steganalytic methods,experimental results demonstrate that the proposed scheme can effectively detect stego images. 展开更多
关键词 Binary image steganalysis informational security embedding distortion distortion level map co-occurrence matrix support vector machine.
下载PDF
3D Gray Level Co-Occurrence Matrix Based Classification of Favor Benign and Borderline Types in Follicular Neoplasm Images 被引量:1
5
作者 Oranit Boonsiri Kiyotada Washiya +1 位作者 Kota Aoki Hiroshi Nagahashi 《Journal of Biosciences and Medicines》 2016年第3期51-56,共6页
Since the efficiency of treatment of thyroid disorder depends on the risk of malignancy, indeterminate follicular neoplasm (FN) images should be classified. The diagnosis process has been done by visual interpretation... Since the efficiency of treatment of thyroid disorder depends on the risk of malignancy, indeterminate follicular neoplasm (FN) images should be classified. The diagnosis process has been done by visual interpretation of experienced pathologists. However, it is difficult to separate the favor benign from borderline types. Thus, this paper presents a classification approach based on 3D nuclei model to classify favor benign and borderline types of follicular thyroid adenoma (FTA) in cytological specimens. The proposed method utilized 3D gray level co-occurrence matrix (GLCM) and random forest classifier. It was applied to 22 data sets of FN images. Furthermore, the use of 3D GLCM was compared with 2D GLCM to evaluate the classification results. From experimental results, the proposed system achieved 95.45% of the classification. The use of 3D GLCM was better than 2D GLCM according to the accuracy of classification. Consequently, the proposed method probably helps a pathologist as a prescreening tool. 展开更多
关键词 Thyroid Follicular Lesion 3D Gray Level co-occurrence matrix Random Ferest Classifier
下载PDF
Development of Comment Correlation Matrix for Mobile Application Recommendation
6
作者 Yi-Lun Chi Yu-Fan Ho +1 位作者 Iuon-Chang Lin Min-Shiang Hwang 《Journal of Electronic Science and Technology》 CAS CSCD 2016年第3期268-274,共7页
As the evolution of mobile technology, mobile devices have become an essential tool in people's daily life. Moreover, with the rapid growth of Internet and mobile networks, people can easily access various services p... As the evolution of mobile technology, mobile devices have become an essential tool in people's daily life. Moreover, with the rapid growth of Internet and mobile networks, people can easily access various services provided by mobile platforms. Many services can be executed on the mobile devices with various mobile applications launched to mobile platforms. People can choose what they like to install in their mobile devices and hence make their life more convenient, entertaining, and productive. However, there are too many mobile applications for users to choose. The goal of this research is to propose a methodology which can recommend top-N lists for mobile applications. A comment correlation matrix is proposed. Furthermore, a recommendation algorithm for mobile applications based on user comments and key attributes is built. With the proposed method, it outperforms Google play and is closer to user real feelings. 展开更多
关键词 Comment correlation matrix mobile applications recommendation system user comment.
下载PDF
Subspace decomposition-based correlation matrix multiplication
7
作者 Cheng Hao Guo Wei Yu Jingdong 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2008年第2期241-245,共5页
The correlation matrix, which is widely used in eigenvalue decomposition (EVD) or singular value decomposition (SVD), usually can be denoted by R = E[yiy'i]. A novel method for constructing the correlation matrix... The correlation matrix, which is widely used in eigenvalue decomposition (EVD) or singular value decomposition (SVD), usually can be denoted by R = E[yiy'i]. A novel method for constructing the correlation matrix R is proposed. The proposed algorithm can improve the resolving power of the signal eigenvalues and overcomes the shortcomings of the traditional subspace methods, which cannot be applied to low SNR. Then the proposed method is applied to the direct sequence spread spectrum (DSSS) signal's signature sequence estimation. The performance of the proposed algorithm is analyzed, and some illustrative simulation results are presented. 展开更多
关键词 subspace theory correlation matrix eigenvalue decomposition direct sequence spread spectrum signal
下载PDF
Optimal Bounds for the Largest Eigenvalue of a 3 ×3 Correlation Matrix
8
作者 Werner Hürlimann 《Advances in Pure Mathematics》 2015年第7期395-402,共8页
A new approach that bounds the largest eigenvalue of 3 × 3 correlation matrices is presented. Optimal bounds by given determinant and trace of the squared correlation matrix are derived and shown to be more strin... A new approach that bounds the largest eigenvalue of 3 × 3 correlation matrices is presented. Optimal bounds by given determinant and trace of the squared correlation matrix are derived and shown to be more stringent than the optimal bounds by Wolkowicz and Styan in specific cases. 展开更多
关键词 correlation matrix Positive Semi-Definite matrix EXTREME Point EIGENVALUE INEQUALITY
下载PDF
Pseudo-Channel Matrix Truncation Based Spatial Correlation Mitigation in Massive MIMO
9
作者 Yitian Chen Shaoshuai Gao +1 位作者 Guofang Tu Hao Qiu 《China Communications》 SCIE CSCD 2021年第9期130-147,共18页
Massive multiple-input multiple-output(MIMO),a technique that can greatly increase spectral efficiency(SE)of cellular networks,has attracted significant interests in recent years.One of the major limitations of massiv... Massive multiple-input multiple-output(MIMO),a technique that can greatly increase spectral efficiency(SE)of cellular networks,has attracted significant interests in recent years.One of the major limitations of massive MIMO systems is pilot contamination,which will deteriorate the SE.The superimposed pilot-based scheme has been proved to be a viable method for pilot contamination reduction.However,it cannot break through another limitation of massive MIMO,i.e.,spatial correlation.In addition,it will also lead to interference between the pilot and user data since they are imposed together.In this paper,we try to tackle these two issues,which will be described as follows.Firstly,a column-wise asymptotically orthogonal matrix,named as pseudo-channel matrix,is developed by orthogonalization of received signal.To recover the information about the large-scale fading(LSF)coefficients,the pseudo-channel matrix is truncated according to the cardinality of adjacent users set(CAUS).By this means,spatial correlation can be mitigated effectively.Secondly,robust independent component analysis(RobustICA)is used to reduce the interference caused by user data,and as a result the system performance can be further improved.Numerical simulation results demonstrate the effectiveness of the proposed method. 展开更多
关键词 massive MIMO pilot contamination pseudo-channel matrix spatial correlation superim-posed pilots.
下载PDF
Cross Correlation of Intra-day Stock Prices in Comparison to Random Matrix Theory
10
作者 Mieko Tanaka-Yamawaki 《Intelligent Information Management》 2011年第3期65-70,共6页
We propose and apply a new algorithm of principal component analysis which is suitable for a large sized, highly random time series data, such as a set of stock prices in a stock market. This algorithm utilizes the fa... We propose and apply a new algorithm of principal component analysis which is suitable for a large sized, highly random time series data, such as a set of stock prices in a stock market. This algorithm utilizes the fact that the major part of the time series is random, and compare the eigenvalue spectrum of cross correlation matrix of a large set of random time series, to the spectrum derived by the random matrix theory (RMT) at the limit of large dimension (the number of independent time series) and long enough length of time series. We test this algorithm on the real tick data of American stocks at different years between 1994 and 2002 and show that the extracted principal components indeed reflects the change of leading stock sectors during this period. 展开更多
关键词 Principal Component RANDOM matrix Theory CROSS correlation EIGENVALUES STOCK MARKET
下载PDF
Covariance Matrix Learning Differential Evolution Algorithm Based on Correlation
11
作者 Sainan Yuan Quanxi Feng 《International Journal of Intelligence Science》 2021年第1期17-30,共14页
Differential evolution algorithm based on the covariance matrix learning can adjust the coordinate system according to the characteristics of the population, which make<span style="font-family:Verdana;"&g... Differential evolution algorithm based on the covariance matrix learning can adjust the coordinate system according to the characteristics of the population, which make<span style="font-family:Verdana;">s</span><span style="font-family:Verdana;"> the search move in a more favorable direction. In order to obtain more accurate information about the function shape, this paper propose</span><span style="font-family:Verdana;">s</span><span style="font-family:;" "=""> <span style="font-family:Verdana;">covariance</span><span style="font-family:Verdana;"> matrix learning differential evolution algorithm based on correlation (denoted as RCLDE)</span></span><span style="font-family:;" "=""> </span><span style="font-family:Verdana;">to improve the search efficiency of the algorithm. First, a hybrid mutation strategy is designed to balance the diversity and convergence of the population;secondly, the covariance learning matrix is constructed by selecting the individual with the less correlation;then, a comprehensive learning mechanism is comprehensively designed by two covariance matrix learning mechanisms based on the principle of probability. Finally,</span><span style="font-family:;" "=""> </span><span style="font-family:;" "=""><span style="font-family:Verdana;">the algorithm is tested on the CEC2005, and the experimental results are compared with other effective differential evolution algorithms. The experimental results show that the algorithm proposed in this paper is </span><span style="font-family:Verdana;">an effective algorithm</span><span style="font-family:Verdana;">.</span></span> 展开更多
关键词 Differential Evolution Algorithm correlation Covariance matrix Parameter Self-Adaptive Technique
下载PDF
A Combination of Feature Selection and Co-occurrence Matrix Methods for Leukocyte Recognition System
12
作者 Li Na Arlends Chris Bagus Mulyawan 《Journal of Software Engineering and Applications》 2012年第12期101-106,共6页
A leukocyte recognition system, as part of a differential blood counter system, is very important in hematology field. In this paper, the propose system aims to automatically classify the white blood cells (leukocytes... A leukocyte recognition system, as part of a differential blood counter system, is very important in hematology field. In this paper, the propose system aims to automatically classify the white blood cells (leukocytes) on a given microscopic image. The classifications of leukocytes are performed based on the combination of color and texture features of the blood cell images. The developed system classifies the leukocytes in one of the five categories (neutrophils, eosinophils, basophils, lymphocytes, and monocytes). In the preprocessing stage, the system starts with converting the microscopic images from Red Green Blue (RGB) color space to Hue Saturation Value (HSV) color space. Next, the system splits the Hue and Saturation features from the Value feature. For both Hue and Saturation features, the system processes their color information using the Feature Selection method and the Window Cropping method;while the Value feature is processed by its texture information using the Co-occurrence matrix method. The final recognition stage is performed using the Euclidean distance method. The combination of the Feature Selection and Co-occurrence Matrix methods gives the best overall recognition accuracies for classifying leukocyte images. 展开更多
关键词 LEUKOCYTE recognition WHITE BLOOD cell MICROSCOPIC image Feature selection co-occurrence matrix
下载PDF
Cross-correlation matrix analysis of Chinese and American bank stocks in subprime crisis
13
作者 朱世钊 李信利 +4 位作者 聂森 张文轻 余高峰 韩筱璞 汪秉宏 《Chinese Physics B》 SCIE EI CAS CSCD 2015年第5期634-638,共5页
In order to study the universality of the interactions among different markets, we analyze the cross-correlation matrix of the price of the Chinese and American bank stocks. We then find that the stock prices of the e... In order to study the universality of the interactions among different markets, we analyze the cross-correlation matrix of the price of the Chinese and American bank stocks. We then find that the stock prices of the emerging market are more correlated than that of the developed market. Considering that the values of the components for the eigenvector may be positive or negative, we analyze the differences between two markets in combination with the endogenous and exogenous events which influence the financial markets. We find that the sparse pattern of components of eigenvectors out of the threshold value has no change in American bank stocks before and after the subprime crisis. However, it changes from sparse to dense for Chinese bank stocks. By using the threshold value to exclude the external factors, we simulate the interactions in financial markets. 展开更多
关键词 EIGENVECTOR stock price subprime crisis cross-correlation matrix
下载PDF
Using shapes correlation for active contour segmentation of uterine fibroid ultrasound images in computer-aided therapy 被引量:14
14
作者 NI Bo HE Fa-zhi +1 位作者 PAN Yi-teng YUAN Zhi-yong 《Applied Mathematics(A Journal of Chinese Universities)》 SCIE CSCD 2016年第1期37-52,共16页
Segmenting the lesion regions from the ultrasound (US) images is an important step in the intra-operative planning of some computer-aided therapies. High-Intensity Focused Ultrasound (HIFU), as a popular computer-... Segmenting the lesion regions from the ultrasound (US) images is an important step in the intra-operative planning of some computer-aided therapies. High-Intensity Focused Ultrasound (HIFU), as a popular computer-aided therapy, has been widely used in the treatment of uterine fibroids. However, such segmentation in HIFU remains challenge for two reasons: (1) the blurry or missing boundaries of lesion regions in the HIFU images and (2) the deformation of uterine fibroids caused by the patient's breathing or an external force during the US imaging process, which can lead to complex shapes of lesion regions. These factors have prevented classical active contour-based segmentation methods from yielding desired results for uterine fibroids in US images. In this paper, a novel active contour-based segmentation method is proposed, which utilizes the correlation information of target shapes among a sequence of images as prior knowledge to aid the existing active contour method. This prior knowledge can be interpreted as a unsupervised clustering of shapes prior modeling. Meanwhile, it is also proved that the shapes correlation has the low-rank property in a linear space, and the theory of matrix recovery is used as an effective tool to impose the proposed prior on an existing active contour model. Finally, an accurate method is developed to solve the proposed model by using the Augmented Lagrange Multiplier (ALM). Experimental results from both synthetic and clinical uterine fibroids US image sequences demonstrate that the proposed method can consistently improve the performance of active contour models and increase the robustness against missing or misleading boundaries, and can greatly improve the efficiency of HIFU therapy. 展开更多
关键词 Active contour shapes correlation ultrasound image segmentation matrix recovery computer-aided therapy.
下载PDF
Correlation of coordinate transformation parameters 被引量:1
15
作者 Du Lan Zhang Hanwei +1 位作者 Zhou Qingyong Wang Ruopu 《Geodesy and Geodynamics》 2012年第1期34-38,共5页
Coordinate transformation parameters between two spatial Cartesian coordinate systems can be solved from the positions of non-colinear corresponding points. Based on the characteristics of translation, rotation and zo... Coordinate transformation parameters between two spatial Cartesian coordinate systems can be solved from the positions of non-colinear corresponding points. Based on the characteristics of translation, rotation and zoom components of the transformation, the complete solution is divided into three steps. Firstly, positional vectors are regulated with respect to the centroid of sets of points in order to separate the translation compo- nents. Secondly, the scale coefficient and rotation matrix are derived from the regulated positions independent- ly and correlations among transformation model parameters are analyzed. It is indicated that this method is applicable to other sets of non-position data to separate the respective attributions for transformation parameters. 展开更多
关键词 coordinate transformation model Bursa model orthnormal matrix singular value decomposition (SVD) correlation
下载PDF
Material microstructures analyzed by using gray level Co-occurrence matrices 被引量:1
16
作者 胡延苏 王志军 +2 位作者 樊晓光 李俊杰 高昂 《Chinese Physics B》 SCIE EI CAS CSCD 2017年第9期483-490,共8页
The mechanical properties of materials greatly depend on the microstructure morphology. The quantitative characterization of material microstructures is essential for the performance prediction and hence the material ... The mechanical properties of materials greatly depend on the microstructure morphology. The quantitative characterization of material microstructures is essential for the performance prediction and hence the material design. At present,the quantitative characterization methods mainly rely on the microstructure characterization of shape, size, distribution,and volume fraction, which related to the mechanical properties. These traditional methods have been applied for several decades and the subjectivity of human factors induces unavoidable errors. In this paper, we try to bypass the traditional operations and identify the relationship between the microstructures and the material properties by the texture of image itself directly. The statistical approach is based on gray level Co-occurrence matrix(GLCM), allowing an objective and repeatable study on material microstructures. We first present how to identify GLCM with the optimal parameters, and then apply the method on three systems with different microstructures. The results show that GLCM can reveal the interface information and microstructures complexity with less human impact. Naturally, there is a good correlation between GLCM and the mechanical properties. 展开更多
关键词 microstructures quantitative characterization mechanical properties gray level co-occurrence matrix
下载PDF
Ternary Zero Correlation Zone Sequence Sets for Asynchronous DS-CDMA
17
作者 Benattou Fassi Ali Djebbari Abdelmalik Taleb-Ahmed 《Communications and Network》 2014年第4期209-217,共9页
In this paper we propose a new class of ternary Zero Correlation Zone (ZCZ) sequence sets based on binary ZCZ sequence sets construction. It is shown that the proposed ternary ZCZ sequence sets can reach the upper bou... In this paper we propose a new class of ternary Zero Correlation Zone (ZCZ) sequence sets based on binary ZCZ sequence sets construction. It is shown that the proposed ternary ZCZ sequence sets can reach the upper bound on the ZCZ sequences. The performance of the proposed sequences set in asynchronous Direct Sequence-Code Division Multiple Access (DS-CDMA) system is evaluated. In the simulation we used two types of channels: Additive White Gaussian Noise (AWGN) and frequency non-selective fading with AWGN noise. The proposed ternary ZCZ sequence sets show better results, in term of Bit Error Rate (BER), than Hayashi’s ternary ZCZ sequence sets. 展开更多
关键词 HADAMARD matrix Zero correlation Zone Sequences correlation ASYNCHRONOUS DS-CDMA BER
下载PDF
On Testing Equality of K Multiple Correlation Matrices
18
作者 A.K.Gupta D.G.Kabe 《Northeastern Mathematical Journal》 CSCD 2000年第4期405-410,共6页
Coutsourides derived an ad hoc nuisance paratmeter removal test for testing equality of two multiple correlation matrices of two independent p variate normal populations under the assumption that a sample of size ... Coutsourides derived an ad hoc nuisance paratmeter removal test for testing equality of two multiple correlation matrices of two independent p variate normal populations under the assumption that a sample of size n is available from each population. This paper presents a likelihood ratio test criterion for testing equality of K multiple correlation matrices and extends the results to the testing of equality of K partial correlation matrices. 展开更多
关键词 normal population multiple correlation matrix partial correlations matrix distribution theory test of hypothesis likelihood ratio test
下载PDF
AN NMF ALGORITHM FOR BLIND SEPARATION OF CONVOLUTIVE MIXED SOURCE SIGNALS WITH LEAST CORRELATION CONSTRAINS
19
作者 Zhang Ye Fang Yong 《Journal of Electronics(China)》 2009年第4期557-563,共7页
Most of the existing algorithms for blind sources separation have a limitation that sources are statistically independent. However, in many practical applications, the source signals are non- negative and mutual stati... Most of the existing algorithms for blind sources separation have a limitation that sources are statistically independent. However, in many practical applications, the source signals are non- negative and mutual statistically dependent signals. When the observations are nonnegative linear combinations of nonnegative sources, the correlation coefficients of the observations are larger than these of source signals. In this letter, a novel Nonnegative Matrix Factorization (NMF) algorithm with least correlated component constraints to blind separation of convolutive mixed sources is proposed. The algorithm relaxes the source independence assumption and has low-complexity algebraic com- putations. Simulation results on blind source separation including real face image data indicate that the sources can be successfully recovered with the algorithm. 展开更多
关键词 Nonnegative matrix factorization Convolutive blind source separation correlation constrain
下载PDF
Area-Correlated Spectral Unmixing Based on Bayesian Nonnegative Matrix Factorization 被引量:1
20
作者 Xiawei Chen Jing Yu Weidong Sun 《Open Journal of Applied Sciences》 2013年第1期41-46,共6页
To solve the problem of the spatial correlation for adjacent areas in traditional spectral unmixing methods, we propose an area-correlated spectral unmixing method based on Bayesian nonnegative matrix factorization. I... To solve the problem of the spatial correlation for adjacent areas in traditional spectral unmixing methods, we propose an area-correlated spectral unmixing method based on Bayesian nonnegative matrix factorization. In the proposed me-thod, the spatial correlation property between two adjacent areas is expressed by a priori probability density function, and the endmembers extracted from one of the adjacent areas are used to estimate the priori probability density func-tions of the endmembers in the current area, which works as a type of constraint in the iterative spectral unmixing process. Experimental results demonstrate the effectivity and efficiency of the proposed method both for synthetic and real hyperspectral images, and it can provide a useful tool for spatial correlation and comparation analysis between ad-jacent or similar areas. 展开更多
关键词 Hyperspectral Image Spectral Unmixing Area-correlation BAYESIAN NONNEGATIVE matrix Factorization
下载PDF
上一页 1 2 66 下一页 到第
使用帮助 返回顶部