One of the fundamental questions in community ecology is whether communities are random or formed by deterministic mechanisms. Although many efforts have been made to verify non-randomness in community structure, litt...One of the fundamental questions in community ecology is whether communities are random or formed by deterministic mechanisms. Although many efforts have been made to verify non-randomness in community structure, little is known with regard to co-occurrence patterns in above-ground and below-ground communities. In this paper, we used a null model to test non-randomness in the structure of the above-ground and below-ground mite communities in farmland of the Sanjiang Plain, Northeast China. Then, we used four tests for non-randomness to recognize species pairs that would be demonstrated as significantly aggregated or segregated co-occurrences of the above-ground and below-ground mite communities. The pattern of the above-ground mite commu- nity was significantly non-random in October, suggesting species segregation and hence interspecific competition. Additionally, species co-occurrence patterns did not differ from randomness in the above-ground mite community in August or in below-ground mite com- munities in August and October. Only one significant species pair was detected in the above-ground mite community in August, while no significant species pairs were recognized in the above-ground mite community in October or in the below-ground mite communities in August and October. The results indicate that non-randomness and significant species pairs may not be the general rule in the above-ground and below-ground mite communities in farmland of the Sanjiang Plain at the fine scale.展开更多
Nitrogen(N)deep placement has been found to reduce N leaching and increase N use efficiency in paddy fields.However,relatively little is known how bacterial consortia,especially abundant and rare taxa,respond to N dee...Nitrogen(N)deep placement has been found to reduce N leaching and increase N use efficiency in paddy fields.However,relatively little is known how bacterial consortia,especially abundant and rare taxa,respond to N deep placement,which is critical for understanding the biodiversity and function of agricultural ecosystem.In this study,lllumina sequencing and ecological models were conducted to examine the diversity patterns and underlying assembly mechanisms of abundant and rare taxa in rice rhizosphere soil under different N fertilization regimes at four rice growth stages in paddy fields.The results showed that abundant and rare bacteria had distinct distribution patterns in rhizosphere samples.Abundant bacteria showed ubiquitous distribution;while rare taxa exhibited uneven distribution across all samples.Stochastic processes dominated community assembly of both abundant and rare bacteria,with dispersal limitation playing a more vital role in abundant bacteria,and undominated processes playing a more important role in rare bacteria.The N deep placement was associated with a greater influence of dispersal limitation than the broadcast N fertilizer(BN)and no N fertilizer(NN)treatments in abundant and rare taxa of rhizosphere soil;while greater contributions from homogenizing dispersal were observed for BN and NN in rare taxa.Network analysis indicated that abundant taxa with closer relationships were usually more likely to occupy the central position of the network than rare taxa.Nevertheless,most of the keystone species were rare taxa and might have played essential roles in maintaining the network stability.Overall,these findings highlighted that the ecological mechanisms and co-occurrence patterns of abundant and rare bacteria in rhizosphere soil under N deep placement.展开更多
Background:Disentangling the relative importance of environmental variables and interspecific interaction in modulating co-occurrence patterns of sympatric species is essential for understanding the mechanisms of comm...Background:Disentangling the relative importance of environmental variables and interspecific interaction in modulating co-occurrence patterns of sympatric species is essential for understanding the mechanisms of community assembly and biodiversity. For the two sympatric Galliformes, Silver Pheasants (Lophura nycthemera) and Whitenecklaced Partridges (Arborophila gingica), we know little about the role of habitat use and interspecific interactions in modulating their coexistence. Methods:We adopted a probabilistic approach incorporating habitat preference and interspecific interaction using occupancy model to account for imperfect detection,and used daily activity pattern analysis to investigate the cooccurrence pattern of these two sympatric Galliformes in wet and dry seasons. Results: We found that the detection probability of Silver Pheasant and White-necklaced Partridge were related to habitat variables and interspecific interaction. The presence of Silver Pheasant increases the detection probability of White-necklaced Partridge in both the wet and dry season. However, the presence of White-necklaced Partridges increases the detection probability of Silver Pheasants in the wet season, but decreases the probability in the dry season. Further, Silver Pheasants were detected frequently in the sites of high values of enhanced vegetable index (EVI) in both the wet and dry season, and in sites away from human residential settlement in the wet season. Whitenecklaced partridges were mainly detected in low EVI sites. The site use probabilities of two Galliformes were best explained by habitat variables, Silver Pheasants and White-necklaced Partridges preferred steeper areas during the wet and dry season. Both species mainly occurred in low EVI areas during the wet season and occupied sites away from the resident settlement during the dry season. Moreover, the site use probabilities of two species had opposite relationships with forest canopy coverage. Silver Pheasants preferred areas with high forest canopy coverage whereas White-necklaced Partridges preferred low forest canopy coverage in the dry season, and vice versa in the wet season. Species interaction factor (SIF)corroborated weak evidence of the dependence of the site use of one species on that of the other in the either dry or wet season.Temporally, high overlapping of daily activity pattern indicated no significantly temporal niche differentiation between sympatric Galliformes in both wet and dry seasons. Conclusions:Our results demonstrated that the presence of two species influenced the detection probability interactively and there was no temporal partitioning in activity time between Silver Pheasants and White-necklaced Partridges in the wet and dry seasons.The site use probability of two Galliformes was best explained by habitat variables, especially the forest canopy coverage.Therefore, environmental variables and interspecific interaction are the leading drivers regulating the detection and site use probability and promoting co-occurrence of Silver Pheasants and White-necklaced Partridges.展开更多
Denitrifying bacteria in epiphytic biofilms play a crucial role in nitrogen cycle in aquatic habitats.However,little is known about the connection between algae and denitrifying bacteria and their assembly processes i...Denitrifying bacteria in epiphytic biofilms play a crucial role in nitrogen cycle in aquatic habitats.However,little is known about the connection between algae and denitrifying bacteria and their assembly processes in epiphytic biofilms.Epiphytic biofilms were collected from submerged macrophytes(Patamogeton lucens and Najas marina L.)in the Caohai Lake,Guizhou,SW China,from July to November 2020 to:(1)investigate the impact of abiotic and biotic variables on denitrifying bacterial communities;(2)investigate the temporal variation of the algae-denitrifying bacteria co-occurrence networks;and(3)determine the contribution of deterministic and stochastic processes to the formation of denitrifying bacterial communities.Abiotic and biotic factors influenced the variation in the denitrifying bacterial community,as shown in the Mantel test.The co-occurrence network analysis unveiled intricate interactions among algae to denitrifying bacteria.Denitrifying bacterial community co-occurrence network complexity(larger average degrees representing stronger network complexity)increased continuously from July to September and decreased in October before increasing in November.The co-occurrence network complexity of the algae and nirS-encoding denitrifying bacteria tended to increase from July to November.The co-occurrence network complexity of the algal and denitrifying bacterial communities was modified by ammonia nitrogen(NH_(4)^(+)-N)and total phosphorus(TP),pH,and water temperature(WT),according to the ordinary least-squares(OLS)model.The modified stochasticity ratio(MST)results reveal that deterministic selection dominated the assembly of denitrifying bacterial communities.The influence of environmental variables to denitrifying bacterial communities,as well as characteristics of algal-bacterial co-occurrence networks and the assembly process of denitrifying bacterial communities,were discovered in epiphytic biofilms in this study.The findings could aid in the appropriate understanding and use of epiphytic biofilms denitrification function,as well as the enhancement of water quality.展开更多
Microorganisms play a key role in aquatic ecosystems.Recent studies show that keystone taxa in microbial community could change the community structure and function.However,most previous studies focus on abundant taxa...Microorganisms play a key role in aquatic ecosystems.Recent studies show that keystone taxa in microbial community could change the community structure and function.However,most previous studies focus on abundant taxa but neglected low abundant ones.To clarify the seasonal variation of bacterial and microalgal communities and understand their synergistic adaptation to diff erent environmental factors,we studied the bacterial and eukaryotic phytoplankton communities in Fenhe River that runs through Taiyuan City,central China,and their seasonal co-occurrence patterns using 16S and 18S rDNA sequencing.Results indicate that positive interaction of eukaryotic phytoplankton network was more active than negative one except winter,indicating that the cooperation(symbiotic phenomenon in which phytoplankton are interdependent and mutually benefi cial)among them could improve the adaption of microbial community to the local environmental changes and maintain the stability of microbial network.The main genera that identifi ed as keystone taxa in bacterial network were Salinivibrio and Sphingopyxis of Proteobacteria and they could respond to the variation of nitrite and make use of it,while those that identifi ed as keystone taxa in eukaryotic phytoplankton network were Pseudoschroederia and Nannochloris,and they were more susceptible to nitrate and phosphate.Mychonastes and Cryptomonas were closely related to water temperature.However,the loss of the co-occurrence by environmental factor changes aff ected the stability of network structure.This study provided a reference for analyzing relationship between bacteria and eukaryotic phytoplankton and revealing potential importance of keystone taxa in similar ecological domains in carbon,nitrogen,and phosphorus dynamics.展开更多
Co-occurrence pattern of fish species plays an important role in understanding the spatio-temporal structure and the stability of fish community.Species coexistence may vary with time and space.The co-occurrence patte...Co-occurrence pattern of fish species plays an important role in understanding the spatio-temporal structure and the stability of fish community.Species coexistence may vary with time and space.The co-occurrence patterns of fish species were examined using the C-score under fixed-fixed null model for fish communities in spring and autumn over different years in the Haizhou Bay,China.The results showed that fish assemblages in the whole bay had non-random patterns in spring and autumn over different years.However,the fish co-occurrence patterns were different for the northern and southern fish assemblages in spring and autumn.The northern fish assemblage showed structured pattern,whereas the southern assemblage were randomly assembled in spring.The co-occurrence patterns of fish communities were relatively stable over different years,and the number of significant species pairs in northern assemblage was more than that in the southern assemblage.Environmental heterogeneity played an important role in determining the distributions of fish species that formed significant species pairs,which might affect the co-occurrence patterns of northern and southern assemblages further in the Haizhou Bay.展开更多
BACKGROUND Addressing oculoplastic conditions in the preoperative period ensures both the safety and functional success of any ophthalmic procedure.Some oculoplastic conditions,like nasolacrimal duct obstruction,have ...BACKGROUND Addressing oculoplastic conditions in the preoperative period ensures both the safety and functional success of any ophthalmic procedure.Some oculoplastic conditions,like nasolacrimal duct obstruction,have been extensively studied,whereas others,like eyelid malposition and thyroid eye disease,have received minimal or no research.AIM To investigate the current practice patterns among ophthalmologists while treating concomitant oculoplastic conditions before any subspecialty ophthalmic intervention.METHODS A cross-sectional survey was disseminated among ophthalmologists all over India.The survey included questions related to pre-operative evaluation,anaesthetic and surgical techniques preferred,post-operative care,the use of adjunctive therapies,and patient follow-up patterns.RESULTS A total of 180 ophthalmologists responded to the survey.Most practitioners(89%)felt that the ROPLAS test was sufficient during pre-operative evaluation before any subspecialty surgery was advised.The most common surgical techniques employed were lacrimal drainage procedures(Dacryocystorhinostomy)(63.3%),eyelid malposition repair(36.9%),and ptosis repair(58.7%).Post-operatively,47.7%of respondents emphasized that at least a 4-week gap should be maintained after lacrimal drainage procedures and eyelid surgeries.Sixty-seven percent of ophthalmologists felt that topical anaesthetic procedures should be preferred while performing ocular surgeries in thyroid eye disease patients.CONCLUSION Approximately 50%of ophthalmologists handle prevalent oculoplastic issues themselves,seeking the expertise of an oculoplastic surgeon under particular conditions.Many ophthalmologists still favor using ROPLAS as a preliminary screening method before proceeding with cataract surgery.Eyelid conditions and thyroid eye disease are not as commonly addressed before subspecialty procedures compared to issues like nasolacrimal duct obstruction and periocular infections.展开更多
Inversion tillage with straw amendment is widely applied in northeastern China, and it can substantially increase the storage of carbon and improve multiple subsoil functions. Soil microorganisms are believed to be th...Inversion tillage with straw amendment is widely applied in northeastern China, and it can substantially increase the storage of carbon and improve multiple subsoil functions. Soil microorganisms are believed to be the key to this process,but research into their role in subsoil amelioration is limited. Therefore, a field experiment was conducted in 2018 in a region in northeastern China with Hapli-Udic Cambisol using four treatments: conventional tillage(CT, tillage to a depth of 15 cm with no straw incorporation), straw incorporation with conventional tillage(SCT, tillage to a depth of 15 cm),inversion tillage(IT, tillage to a depth of 35 cm) and straw incorporation with inversion tillage(SIT, tillage to a depth of 35 cm). The soils were managed by inversion to a depth of 15 or 35 cm every year after harvest. The results indicated that SIT improved soil multi-nutrient cycling variables and increased the availability of key nutrients such as soil organic carbon, total nitrogen, available nitrogen, available phosphorus and available potassium in both the topsoil and subsoil.In contrast to CT and SCT, SIT created a looser microbial network structure but with highly centralized clusters by reducing the topological properties of average connectivity and node number, and by increasing the average path length and the modularity. A Random Forest analysis found that the average path length and the clustering coefficient were the main determinants of soil multi-nutrient cycling. These findings suggested that SIT can be an effective option for improving soil multi-nutrient cycling and the structure of microbial networks, and they provide crucial information about the microbial strategies that drive the decomposition of straw in Hapli-Udic Cambisol.展开更多
Interactions between dissolved organic matter(DOM)and bacteria are central in the biogeochemical cycles of aquatic ecosystems;however,the relative importance of biodegradable dissolved organic carbon(BDOC)compared wit...Interactions between dissolved organic matter(DOM)and bacteria are central in the biogeochemical cycles of aquatic ecosystems;however,the relative importance of biodegradable dissolved organic carbon(BDOC)compared with other environmental variables in structuring the bacterial communities needs further investigation.Here,we investigated bacterial communities,chromophoric DOM(CDOM)characteristics and physico-chemical parameters as well as examined BDOC via bioassay incubations in large eutrophic Lake Taihu,China,to explore the importance of BDOC for shaping bacterial community structures and co-occurrence patterns.We found that the proportion of BDOC(%BDOC)correlated significantly and positively with the DOC concentration and the index of the contribution of recent produced autochthonous CDOM(BIX).%BDOC,further correlated positively with the relative abundance of the tryptophan-like component and negatively with CDOM aromaticity,indicating that autochthonous production of protein-like CDOM was an important source of BDOC.The richness of the bacterial communities correlated negatively with%BDOC,indicating an enhanced number of species in the refractory DOC environments.%BDOC was identified as a significant stronger factor than DOC in shaping bacterial community composition and the co-occurrence network,suggesting that substrate biodegradability is more significant than DOC quantity determining the bacterial communities in a eutrophic lake.Environmental factors explained a larger proportion of the variation in the conditionally rare and abundant subcommunity than for the abundant and the rare bacterial subcommunities.Our findings emphasize the importance of considering bacteria with different abundance patterns and DOC biodegradability when studying the interactions between DOM and bacteria in eutrophic lakes.展开更多
Climate change and human activity have led to the degradation of desert wetlands.Free-living diazotrophs are vital for soil nitrogen input.However,a comprehensive understanding of how soil free-living diazotrophic com...Climate change and human activity have led to the degradation of desert wetlands.Free-living diazotrophs are vital for soil nitrogen input.However,a comprehensive understanding of how soil free-living diazotrophic communities and their co-occurrence patterns respond to desert wetland degradation is lacking.Here,quantitative polymerase chain reaction(qPCR),amplicon sequencing targeting nitrogenase gene(nifH),and network analysis were used to investigate the abundance,diversity,community composition,and co-occurrence patterns of soil free-living diazotrophs along the wetland degradation gradient,i.e.,non-degraded(ND),lightly degraded(LD),moderately degraded(MD),and severely degraded(SD),in the southeastern Mu Us Desert,northern China.The abundance and Shannon,Simpson,Chao 1,and ACE indexes decreased(P<0.05)by 14.6%,20.7%,2.1%,46.5%,and 45.0%,respectively,in SD wetland,whereas no significant difference(P>0.05)was observed between ND and LD wetlands.The relative abundance of Proteobacteria generally decreased(by 53.5%–19.7%)across the different degradation levels,while the relative abundance of Cyanobacteria increased(by 6.2%–40.1%)from ND to MD levels.The abundance,diversity,and community composition of diazotrophs were most strongly related to soil organic carbon,followed by total nitrogen,moisture,and pH.The least number of network nodes and edges and the lowest density were observed for MD and SD wetlands,indicating that the complexity of free-living diazotrophic networks was reduced by continued degeneration.Overall,severe desert wetland degradation affected the abundance,diversity,and network complexity of soil free-living diazotrophs more negatively than light degradation.This degradation promoted the growth of autotrophic diazotrophs and inhibited the growth of heterotrophic diazotrophs.These changes were mostly related to the loss of soil organic carbon.展开更多
BACKGROUND Although chronic erosive gastritis(CEG)is common,its clinical characteristics have not been fully elucidated.The lack of consensus regarding its treatment has resulted in varied treatment regimens.AIM To ex...BACKGROUND Although chronic erosive gastritis(CEG)is common,its clinical characteristics have not been fully elucidated.The lack of consensus regarding its treatment has resulted in varied treatment regimens.AIM To explore the clinical characteristics,treatment patterns,and short-term outcomes in CEG patients in China.METHODS We recruited patients with chronic non-atrophic or mild-to-moderate atrophic gastritis with erosion based on endoscopy and pathology.Patients and treating physicians completed a questionnaire regarding history,endoscopic findings,and treatment plans as well as a follow-up questionnaire to investigate changes in symptoms after 4 wk of treatment.RESULTS Three thousand five hundred sixty-three patients from 42 centers across 24 cities in China were included.Epigastric pain(68.0%),abdominal distension(62.6%),and postprandial fullness(47.5%)were the most common presenting symptoms.Gastritis was classified as chronic non-atrophic in 69.9%of patients.Among those with erosive lesions,72.1%of patients had lesions in the antrum,51.0%had multiple lesions,and 67.3%had superficial flat lesions.In patients with epigastric pain,the combination of a mucosal protective agent(MPA)and proton pump inhibitor was more effective.For those with postprandial fullness,acid regurgitation,early satiety,or nausea,a MPA appeared more promising.CONCLUSION CEG is a multifactorial disease which is common in Asian patients and has non-specific symptoms.Gastroscopy may play a major role in its detection and diagnosis.Treatment should be individualized based on symptom profile.展开更多
Objective: Plant-based diets have multiple health benefits for cancers;however, little is known about the association between plant-based dietary patterns and esophageal cancer(EC).This study presents an investigation...Objective: Plant-based diets have multiple health benefits for cancers;however, little is known about the association between plant-based dietary patterns and esophageal cancer(EC).This study presents an investigation of the prospective associations among three predefined indices of plant-based dietary patterns and the risk of EC.Methods: We performed endoscopic screening for 15,709 participants aged 40-69 years from two high-risk areas of China from January 2005 to December 2009 and followed the cohort until December 31, 2022. The overall plant-based diet index(PDI), healthful plant-based diet index(h PDI), and unhealthful plant-based diet index(u PDI), were calculated using survey responses to assess dietary patterns. We applied Cox proportional hazard regression to estimate the multivariable hazard ratios(HRs) and 95% confidence intervals(95% CIs) of EC across 3plant-based diet indices and further stratified the analysis by subgroups.Results: The final study sample included 15,184 participants in the cohort. During a follow-up of 219,365person-years, 176 patients with EC were identified. When the highest quartile was compared with the lowest quartile, the pooled multivariable-adjusted HR of EC was 0.50(95% CI, 0.32-0.77) for h PDI. In addition, the HR per 10-point increase in the h PDI score was 0.42(95% CI, 0.27-0.66) for ECs. Conversely, u PDI was positively associated with the risk of EC, and the HR was 1.80(95% CI, 1.16-2.82). The HR per 10-point increase in the u PDI score was 1.90(95% CI, 1.26-2.88) for ECs. The associations between these scores and the risk of EC were consistent in most subgroups. These results remained robust in sensitivity analyses.Conclusions: A healthy plant-based dietary pattern was associated with a reduced risk of EC. Emphasizing the healthiness and quality of plant-based diets may be important for preventing the development of EC.展开更多
Recently,extreme meteorological droughts have affected China,causing terrible socioeconomic impacts.Despite previous research on the spatiotemporal characteristics and mechanisms of drought,two crucial issues remain s...Recently,extreme meteorological droughts have affected China,causing terrible socioeconomic impacts.Despite previous research on the spatiotemporal characteristics and mechanisms of drought,two crucial issues remain seldom explored.First,an event-oriented drought chronology with detailed spatiotemporal evolutions is urgently required.Second,the complex migration patterns and diversity of synchronous temperature extremes need to be quantitatively investigated.Accordingly,the main achievements of our investigation are as follows.We produced an event-oriented set of extreme meteorological droughts over China through the application of a newly developed 3D DBSCAN-based detection method(deposited on https://doi.org/10.25452/figshare.plus.25512334),which was verified with a historical atlas and monographs on a case-by-case basis.In addition,distinctive migration patterns(i.e.,stationary/propagation types)are identified and ranked,considering the differences in latitudinal zones and coastal/inland locations.We also analyze the diversity of synchronous temperature extremes(e.g.,hotness and coldness).Notably,an increasing trend in hot droughts occurred over China since the late 1990s,predominantly appearing to the south of 30°N and north of 40°N.All drought events and synchronous temperature extremes are ranked using a comprehensive magnitude index,with the 2022 summer-autumn Yangtze River hot drought being the hottest.Furthermore,Liang-Kleeman information flow-based causality analysis emphasizes key areas where the PDO and AMO influenced decadal variations in coverages of droughts and temperature extremes.We believe that the achievements in this study may offer new insights into sequential mechanism exploration and prediction-related issues.展开更多
Background:Foot kinematics,such as excessive eversion and malalignment of the hindfoot,are believed to be associated with running-related injuries.The maj ority of studies to date show that different foot strike patte...Background:Foot kinematics,such as excessive eversion and malalignment of the hindfoot,are believed to be associated with running-related injuries.The maj ority of studies to date show that different foot strike patterns influence these specific foot and ankle kinematics.However,technical deficiencies in traditional motion capture approaches limit knowledge of in vivo joint kinematics with respect to rearfoot and forefoot strike patterns(RFS and FFS,respectively).This study uses a high-speed dual fluoroscopic imaging system(DFIS)to determine the effects of different foot strike patterns on 3D in vivo tibiotalar and subtalar joints kinematics.Methods:Fifteen healthy male recreational runners underwent foot computed tomography scanning for the construction of 3-dimensional models.A high-speed DFIS(100 Hz)was used to collect 6 degrees of freedom kinematics for participants’tibiotalar and subtalar joints when they adopted RFS and FFS in barefoot condition.Results:Compared with RFS,FFS exhibited greater internal rotation at 0%-20%of the stance phase in the tibiotalar joint.The peak internal rotation angle of the tibiotalar joint under FFS was greater than under RFS(p<0.001,Cohen’s d=0.92).RFS showed more dorsiflexion at 0%-20%of the stance phase in the tibiotalar joint than FFS.RFS also presented a larger anterior translation(p<0.001,Cohen’s d=1.28)in the subtalar joint at i nitial contact than FFS.Conclusion:Running with acute barefoot FFS increases the internal rotation of the tibiotalar joint in the early stance.The use of high-speed DFIS to quantify the movement of the tibiotalar and subtalar joint was critical to revealing the effects of RF S and FFS during running.展开更多
To explore the effects of freeze‒thaw cycles on the mechanical properties and crack evolution of fissured sandstone,biaxial compression experiments were carried out on sandstone subjected to freeze‒thaw cycles to char...To explore the effects of freeze‒thaw cycles on the mechanical properties and crack evolution of fissured sandstone,biaxial compression experiments were carried out on sandstone subjected to freeze‒thaw cycles to characterize the changes in the physical and mechanical properties of fissured sandstone caused by freeze‒thaw cycles.The crack evolution and crack change process on the surface of the fissured sandstone were recorded and analysed in detail via digital image technology(DIC).Numerical simulation was used to reveal the expansion process and damage mode of fine-scale cracks under the action of freeze‒thaw cycles,and the simulation results were compared and analysed with the experimental data to verify the reliability of the numerical model.The results show that the mass loss,porosity,peak stress and elastic modulus all increase with increasing number of freeze‒thaw cycles.With an increase in the number of freeze‒thaw cycles,a substantial change in displacement occurs around the prefabricated cracks,and a stress concentration appears at the crack tip.As new cracks continue to sprout at the tips of the prefabricated cracks until the microcracks gradually penetrate into the main cracks,the displacement cloud becomes obviously discontinuous,and the contours of the displacement field in the crack fracture damage area simply intersect with the prefabricated cracks to form an obvious fracture.The damage patterns of the fractured sandstone after freeze‒thaw cycles clearly differ,forming a symmetrical"L"-shaped damage pattern at zero freeze‒thaw cycles,a symmetrical"V"-shaped damage pattern at 10 freeze‒thaw cycles,and a"V"-shaped damage pattern at 20 freeze‒thaw cycles.After 20 freeze‒thaw cycles,a"V"-shaped destruction pattern and"L"-shaped destruction pattern are formed;after 30 freeze‒thaw cycles,an"N"-shaped destruction pattern is formed.This shows that the failure mode of fractured sandstone gradually becomes more complicated with an increasing number of freeze‒thaw cycles.The effects of freeze‒thaw cycles on the direction and rate of crack propagation are revealed through a temperature‒load coupled model,which provides an important reference for an in-depth understanding of the freeze‒thaw failure mechanisms of fractured rock masses.展开更多
The World Journal of Cardiology published an article written by Kuwahara et al that we take the pleasure to comment on.We focused our attention on venous congestion.In intensive care settings,it is now widely accepted...The World Journal of Cardiology published an article written by Kuwahara et al that we take the pleasure to comment on.We focused our attention on venous congestion.In intensive care settings,it is now widely accepted that venous congestion is an important clinical feature worthy of investigation.Evaluating venous Doppler profile abnormalities at multiple sites could suggest adequate treatment and monitor its efficacy.Renal dysfunction could trigger or worsen fluid overload in heart disease,and cardio-renal syndrome is a well-characterized spectrum of disorders describing the complex interactions between heart and kidney diseases.Fluid overload and venous congestion,including renal venous hypertension,are major determinants of acute and chronic renal dysfunction arising in heart disease.Organ congestion from venous hypertension could be involved in the development of organ injury in several clinical situations,such as critical diseases,congestive heart failure,and chronic kidney disease.Ultrasonography and abnormal Doppler flow patterns diagnose clinically significant systemic venous congestion.Cardiologists and nephrologists might use this valuable,noninvasive,bedside diagnostic tool to establish fluid status and guide clinical choices.展开更多
Land use influences soil biota community composition and diversity,and then belowground ecosystem processes and functions.To characterize the effect of land use on soil biota,soil nematode communities in crop land,for...Land use influences soil biota community composition and diversity,and then belowground ecosystem processes and functions.To characterize the effect of land use on soil biota,soil nematode communities in crop land,forest land and fallow land were investigated in six regions of northern China.Generic richness,diversity,abundance and biomass of soil nematodes was the lowest in crop land.The richness and diversity of soil nematodes were 28.8and 15.1%higher in fallow land than in crop land,respectively.No significant differences in soil nematode indices were found between forest land and fallow land,but their network keystone genera composition was different.Among the keystone genera,50%of forest land genera were omnivores-predators and 36%of fallow land genera were bacterivores.The proportion of fungivores in forest land was 20.8%lower than in fallow land.The network complexity and the stability were lower in crop land than forest land and fallow land.Soil pH,NH_(4)^(+)-N and NO_(3)^(–)-N were the major factors influencing the soil nematode community in crop land while soil organic carbon and moisture were the major factors in forest land.Soil nematode communities in crop land influenced by artificial management practices were more dependent on the soil environment than communities in forest land and fallow land.Land use induced soil environment variation and altered network relationships by influencing trophic group proportions among keystone nematode genera.展开更多
Background: Cardiovascular diseases are the leading cause of death in India, with coronary artery disease (CAD) accounting for a majority of the deaths. There are few large registries on acute coronary syndrome (ACS) ...Background: Cardiovascular diseases are the leading cause of death in India, with coronary artery disease (CAD) accounting for a majority of the deaths. There are few large registries on acute coronary syndrome (ACS) from India. Our aim is to study the clinical and epidemiological profile of ACS PATIENTS presenting to our institute, including their angiographic features. Methods: This hospital-based observational, single tertiary care center, prospective study was conducted on patients admitted in the Department of Cardiology at a tertiary care center in Haryana. The study included 400 patients aged greater than 18 years who were admitted with the diagnosis of ACS, and it was carried out for 1 year. The epidemiological profile, clinical history, risk factors, electrocardiogram findings, and angiographic pattern were studied and analyzed with appropriate statistical tools. Results: The mean age of the study population was 55.12 ± 11.78 years. Male and female ratio was 2.4:1. The majority of the patients came from rural background (80%);24% of the patients were illiterate. Smoking was the most common risk factor (51.5%) in our study population followed by hypertension (40%) and diabetes (28%). Unstable angina was the most common type of ACS, which was found in 68.25% of patients. Premature CAD was found in 27.8% of patients and obstructive CAD was found in 63% of patients. Coronary angiography revealed that 39% had single vessel disease (SVD), 23.5% had double vessel disease (DVD), and 27.5% had triple vessel disease (TVD). LAD was more commonly involved, followed by RCA and LCX. Within the first 24 hours, 67% of patients sought medical assistance and only 38.5% received definitive treatment, suggesting a delay in seeking definitive treatment in our study population. Conclusion: The study suggests that unstable angina is the most common form of ACS in the study population, which is mostly of rural background with significant delay in seeking medical help. Smoking is the most common risk factor in the study population.展开更多
Positional information encoded in spatial concentration patterns is crucial for the development of multicellular organisms.However,it is still unclear how such information is affected by the physically dissipative dif...Positional information encoded in spatial concentration patterns is crucial for the development of multicellular organisms.However,it is still unclear how such information is affected by the physically dissipative diffusion process.Here we study one-dimensional patterning systems with analytical derivation and numerical simulations.We find that the diffusion constant of the patterning molecules exhibits a nonmonotonic effect on the readout of the positional information from the concentration patterns.Specifically,there exists an optimal diffusion constant that maximizes the positional information.Moreover,we find that the energy dissipation due to the physical diffusion imposes a fundamental upper limit on the positional information.展开更多
The complex and volatile international landscape has significantly impacted global grain supply security. This study uses a complex network analysis model to examine the evolution and trends of the global major grain ...The complex and volatile international landscape has significantly impacted global grain supply security. This study uses a complex network analysis model to examine the evolution and trends of the global major grain trade from 1990 to 2020, focusing on network topology, centrality ranking, and community structure. There are three major findings. First, the global major grain trade network has expanded in scale, with a growing emphasis on diversification and balance. During the study period, the United States, Canada, China, and Brazil were the core nodes of the network. Grain-exporting countries were mainly situated in Asia, the Americas, and Europe, and importing countries in Asia, Africa, and Europe. Second, a significant increase in the number of high centrality countries with high export capacity occurred, benefiting from natural advantages such as fertile land and favorable climates. Third, the main global grain trade network is divided into four communities, with the Americas-Europe community being the largest and most widespread. The formation of the community pattern was influenced by geographic proximity, driven by the core exporting countries. Therefore, the world needs to enhance the existing trade model, promote the multi-polarization of the grain trade network, and establish a global vision for the future community. Countries and regions should participate actively in global grain trade security governance and institutional reform, expand trade links with other countries, and optimize import and export policies to reduce trade risks.展开更多
基金Under the auspices of National Natural Science Foundation of China(No.41101049,40601047,41371072,31101617,41171047)China Postdoctoral Science Foundation(No.2012M511361)+2 种基金Excellent Youth Scholars of Northeast Institute of Geography and Agroecology,Chinese Academy of Sciences(No.DLSYQ2012004)Fund for Distinguished Young Scholar of Harbin Normal University(No.KGB201204)Scientific Innovation Project for Doctoral Candidate of Harbin Normal University(No.HSDBSCX2012-07)
文摘One of the fundamental questions in community ecology is whether communities are random or formed by deterministic mechanisms. Although many efforts have been made to verify non-randomness in community structure, little is known with regard to co-occurrence patterns in above-ground and below-ground communities. In this paper, we used a null model to test non-randomness in the structure of the above-ground and below-ground mite communities in farmland of the Sanjiang Plain, Northeast China. Then, we used four tests for non-randomness to recognize species pairs that would be demonstrated as significantly aggregated or segregated co-occurrences of the above-ground and below-ground mite communities. The pattern of the above-ground mite commu- nity was significantly non-random in October, suggesting species segregation and hence interspecific competition. Additionally, species co-occurrence patterns did not differ from randomness in the above-ground mite community in August or in below-ground mite com- munities in August and October. Only one significant species pair was detected in the above-ground mite community in August, while no significant species pairs were recognized in the above-ground mite community in October or in the below-ground mite communities in August and October. The results indicate that non-randomness and significant species pairs may not be the general rule in the above-ground and below-ground mite communities in farmland of the Sanjiang Plain at the fine scale.
基金the National Key Research and Development Program of China(2016YFD0200309 and 2018YFD0301104-01).
文摘Nitrogen(N)deep placement has been found to reduce N leaching and increase N use efficiency in paddy fields.However,relatively little is known how bacterial consortia,especially abundant and rare taxa,respond to N deep placement,which is critical for understanding the biodiversity and function of agricultural ecosystem.In this study,lllumina sequencing and ecological models were conducted to examine the diversity patterns and underlying assembly mechanisms of abundant and rare taxa in rice rhizosphere soil under different N fertilization regimes at four rice growth stages in paddy fields.The results showed that abundant and rare bacteria had distinct distribution patterns in rhizosphere samples.Abundant bacteria showed ubiquitous distribution;while rare taxa exhibited uneven distribution across all samples.Stochastic processes dominated community assembly of both abundant and rare bacteria,with dispersal limitation playing a more vital role in abundant bacteria,and undominated processes playing a more important role in rare bacteria.The N deep placement was associated with a greater influence of dispersal limitation than the broadcast N fertilizer(BN)and no N fertilizer(NN)treatments in abundant and rare taxa of rhizosphere soil;while greater contributions from homogenizing dispersal were observed for BN and NN in rare taxa.Network analysis indicated that abundant taxa with closer relationships were usually more likely to occupy the central position of the network than rare taxa.Nevertheless,most of the keystone species were rare taxa and might have played essential roles in maintaining the network stability.Overall,these findings highlighted that the ecological mechanisms and co-occurrence patterns of abundant and rare bacteria in rhizosphere soil under N deep placement.
基金supported by the National Key Research and Development Program of China(2017YFC0503802)China Postdoctoral Science Foundation(2017M 620905)
文摘Background:Disentangling the relative importance of environmental variables and interspecific interaction in modulating co-occurrence patterns of sympatric species is essential for understanding the mechanisms of community assembly and biodiversity. For the two sympatric Galliformes, Silver Pheasants (Lophura nycthemera) and Whitenecklaced Partridges (Arborophila gingica), we know little about the role of habitat use and interspecific interactions in modulating their coexistence. Methods:We adopted a probabilistic approach incorporating habitat preference and interspecific interaction using occupancy model to account for imperfect detection,and used daily activity pattern analysis to investigate the cooccurrence pattern of these two sympatric Galliformes in wet and dry seasons. Results: We found that the detection probability of Silver Pheasant and White-necklaced Partridge were related to habitat variables and interspecific interaction. The presence of Silver Pheasant increases the detection probability of White-necklaced Partridge in both the wet and dry season. However, the presence of White-necklaced Partridges increases the detection probability of Silver Pheasants in the wet season, but decreases the probability in the dry season. Further, Silver Pheasants were detected frequently in the sites of high values of enhanced vegetable index (EVI) in both the wet and dry season, and in sites away from human residential settlement in the wet season. Whitenecklaced partridges were mainly detected in low EVI sites. The site use probabilities of two Galliformes were best explained by habitat variables, Silver Pheasants and White-necklaced Partridges preferred steeper areas during the wet and dry season. Both species mainly occurred in low EVI areas during the wet season and occupied sites away from the resident settlement during the dry season. Moreover, the site use probabilities of two species had opposite relationships with forest canopy coverage. Silver Pheasants preferred areas with high forest canopy coverage whereas White-necklaced Partridges preferred low forest canopy coverage in the dry season, and vice versa in the wet season. Species interaction factor (SIF)corroborated weak evidence of the dependence of the site use of one species on that of the other in the either dry or wet season.Temporally, high overlapping of daily activity pattern indicated no significantly temporal niche differentiation between sympatric Galliformes in both wet and dry seasons. Conclusions:Our results demonstrated that the presence of two species influenced the detection probability interactively and there was no temporal partitioning in activity time between Silver Pheasants and White-necklaced Partridges in the wet and dry seasons.The site use probability of two Galliformes was best explained by habitat variables, especially the forest canopy coverage.Therefore, environmental variables and interspecific interaction are the leading drivers regulating the detection and site use probability and promoting co-occurrence of Silver Pheasants and White-necklaced Partridges.
基金Supported by the National Natural Science Foundation of China(No.41867056)the Guizhou Provincial Key Technology R&D Program(Nos.2021470,2023216)。
文摘Denitrifying bacteria in epiphytic biofilms play a crucial role in nitrogen cycle in aquatic habitats.However,little is known about the connection between algae and denitrifying bacteria and their assembly processes in epiphytic biofilms.Epiphytic biofilms were collected from submerged macrophytes(Patamogeton lucens and Najas marina L.)in the Caohai Lake,Guizhou,SW China,from July to November 2020 to:(1)investigate the impact of abiotic and biotic variables on denitrifying bacterial communities;(2)investigate the temporal variation of the algae-denitrifying bacteria co-occurrence networks;and(3)determine the contribution of deterministic and stochastic processes to the formation of denitrifying bacterial communities.Abiotic and biotic factors influenced the variation in the denitrifying bacterial community,as shown in the Mantel test.The co-occurrence network analysis unveiled intricate interactions among algae to denitrifying bacteria.Denitrifying bacterial community co-occurrence network complexity(larger average degrees representing stronger network complexity)increased continuously from July to September and decreased in October before increasing in November.The co-occurrence network complexity of the algae and nirS-encoding denitrifying bacteria tended to increase from July to November.The co-occurrence network complexity of the algal and denitrifying bacterial communities was modified by ammonia nitrogen(NH_(4)^(+)-N)and total phosphorus(TP),pH,and water temperature(WT),according to the ordinary least-squares(OLS)model.The modified stochasticity ratio(MST)results reveal that deterministic selection dominated the assembly of denitrifying bacterial communities.The influence of environmental variables to denitrifying bacterial communities,as well as characteristics of algal-bacterial co-occurrence networks and the assembly process of denitrifying bacterial communities,were discovered in epiphytic biofilms in this study.The findings could aid in the appropriate understanding and use of epiphytic biofilms denitrification function,as well as the enhancement of water quality.
基金Supported by the National Natural Science Foundation of China(No.31770223)the Excellent Achievement Cultivation Project of Higher Education in Shanxi(No.2020KJ029)the Scientifi c and Technological Innovation Programs of Higher Education Institutions in Shanxi(No.2019L0778)。
文摘Microorganisms play a key role in aquatic ecosystems.Recent studies show that keystone taxa in microbial community could change the community structure and function.However,most previous studies focus on abundant taxa but neglected low abundant ones.To clarify the seasonal variation of bacterial and microalgal communities and understand their synergistic adaptation to diff erent environmental factors,we studied the bacterial and eukaryotic phytoplankton communities in Fenhe River that runs through Taiyuan City,central China,and their seasonal co-occurrence patterns using 16S and 18S rDNA sequencing.Results indicate that positive interaction of eukaryotic phytoplankton network was more active than negative one except winter,indicating that the cooperation(symbiotic phenomenon in which phytoplankton are interdependent and mutually benefi cial)among them could improve the adaption of microbial community to the local environmental changes and maintain the stability of microbial network.The main genera that identifi ed as keystone taxa in bacterial network were Salinivibrio and Sphingopyxis of Proteobacteria and they could respond to the variation of nitrite and make use of it,while those that identifi ed as keystone taxa in eukaryotic phytoplankton network were Pseudoschroederia and Nannochloris,and they were more susceptible to nitrate and phosphate.Mychonastes and Cryptomonas were closely related to water temperature.However,the loss of the co-occurrence by environmental factor changes aff ected the stability of network structure.This study provided a reference for analyzing relationship between bacteria and eukaryotic phytoplankton and revealing potential importance of keystone taxa in similar ecological domains in carbon,nitrogen,and phosphorus dynamics.
基金funded by the National Natural Science Foundation of China (No. 31772852)the Fundamental Research Funds for the Central Universities (Nos. 2015 62030, 201612004)the Public Science and Technology Research Funds Projects of Ocean (No. 201305030)
文摘Co-occurrence pattern of fish species plays an important role in understanding the spatio-temporal structure and the stability of fish community.Species coexistence may vary with time and space.The co-occurrence patterns of fish species were examined using the C-score under fixed-fixed null model for fish communities in spring and autumn over different years in the Haizhou Bay,China.The results showed that fish assemblages in the whole bay had non-random patterns in spring and autumn over different years.However,the fish co-occurrence patterns were different for the northern and southern fish assemblages in spring and autumn.The northern fish assemblage showed structured pattern,whereas the southern assemblage were randomly assembled in spring.The co-occurrence patterns of fish communities were relatively stable over different years,and the number of significant species pairs in northern assemblage was more than that in the southern assemblage.Environmental heterogeneity played an important role in determining the distributions of fish species that formed significant species pairs,which might affect the co-occurrence patterns of northern and southern assemblages further in the Haizhou Bay.
文摘BACKGROUND Addressing oculoplastic conditions in the preoperative period ensures both the safety and functional success of any ophthalmic procedure.Some oculoplastic conditions,like nasolacrimal duct obstruction,have been extensively studied,whereas others,like eyelid malposition and thyroid eye disease,have received minimal or no research.AIM To investigate the current practice patterns among ophthalmologists while treating concomitant oculoplastic conditions before any subspecialty ophthalmic intervention.METHODS A cross-sectional survey was disseminated among ophthalmologists all over India.The survey included questions related to pre-operative evaluation,anaesthetic and surgical techniques preferred,post-operative care,the use of adjunctive therapies,and patient follow-up patterns.RESULTS A total of 180 ophthalmologists responded to the survey.Most practitioners(89%)felt that the ROPLAS test was sufficient during pre-operative evaluation before any subspecialty surgery was advised.The most common surgical techniques employed were lacrimal drainage procedures(Dacryocystorhinostomy)(63.3%),eyelid malposition repair(36.9%),and ptosis repair(58.7%).Post-operatively,47.7%of respondents emphasized that at least a 4-week gap should be maintained after lacrimal drainage procedures and eyelid surgeries.Sixty-seven percent of ophthalmologists felt that topical anaesthetic procedures should be preferred while performing ocular surgeries in thyroid eye disease patients.CONCLUSION Approximately 50%of ophthalmologists handle prevalent oculoplastic issues themselves,seeking the expertise of an oculoplastic surgeon under particular conditions.Many ophthalmologists still favor using ROPLAS as a preliminary screening method before proceeding with cataract surgery.Eyelid conditions and thyroid eye disease are not as commonly addressed before subspecialty procedures compared to issues like nasolacrimal duct obstruction and periocular infections.
基金funded by the National Key Research and Development Program of China (2022YFD1500100)the Strategic Priority Research Program of the Chinese Academy of Sciences (XDA28070100)+1 种基金the National Natural Science Foundation of China (41807085)the earmarked fund for China Agriculture Research System (CARS04)。
文摘Inversion tillage with straw amendment is widely applied in northeastern China, and it can substantially increase the storage of carbon and improve multiple subsoil functions. Soil microorganisms are believed to be the key to this process,but research into their role in subsoil amelioration is limited. Therefore, a field experiment was conducted in 2018 in a region in northeastern China with Hapli-Udic Cambisol using four treatments: conventional tillage(CT, tillage to a depth of 15 cm with no straw incorporation), straw incorporation with conventional tillage(SCT, tillage to a depth of 15 cm),inversion tillage(IT, tillage to a depth of 35 cm) and straw incorporation with inversion tillage(SIT, tillage to a depth of 35 cm). The soils were managed by inversion to a depth of 15 or 35 cm every year after harvest. The results indicated that SIT improved soil multi-nutrient cycling variables and increased the availability of key nutrients such as soil organic carbon, total nitrogen, available nitrogen, available phosphorus and available potassium in both the topsoil and subsoil.In contrast to CT and SCT, SIT created a looser microbial network structure but with highly centralized clusters by reducing the topological properties of average connectivity and node number, and by increasing the average path length and the modularity. A Random Forest analysis found that the average path length and the clustering coefficient were the main determinants of soil multi-nutrient cycling. These findings suggested that SIT can be an effective option for improving soil multi-nutrient cycling and the structure of microbial networks, and they provide crucial information about the microbial strategies that drive the decomposition of straw in Hapli-Udic Cambisol.
基金supported by the National Natural Science Foundation of China (Nos.41930760, 41807362, and 41977322)the Provincial Natural Science Foundation of Jiangsu in China (No.BK20181104)+2 种基金the Key Research Program of Frontier Sciences, Chinese Academy of Sciences (No.QYZDB-SSWDQC016)supported by WATEC (Centre for Water Technology, AU)the TüBITAK outstanding scientists program 2232 (project 118C250)。
文摘Interactions between dissolved organic matter(DOM)and bacteria are central in the biogeochemical cycles of aquatic ecosystems;however,the relative importance of biodegradable dissolved organic carbon(BDOC)compared with other environmental variables in structuring the bacterial communities needs further investigation.Here,we investigated bacterial communities,chromophoric DOM(CDOM)characteristics and physico-chemical parameters as well as examined BDOC via bioassay incubations in large eutrophic Lake Taihu,China,to explore the importance of BDOC for shaping bacterial community structures and co-occurrence patterns.We found that the proportion of BDOC(%BDOC)correlated significantly and positively with the DOC concentration and the index of the contribution of recent produced autochthonous CDOM(BIX).%BDOC,further correlated positively with the relative abundance of the tryptophan-like component and negatively with CDOM aromaticity,indicating that autochthonous production of protein-like CDOM was an important source of BDOC.The richness of the bacterial communities correlated negatively with%BDOC,indicating an enhanced number of species in the refractory DOC environments.%BDOC was identified as a significant stronger factor than DOC in shaping bacterial community composition and the co-occurrence network,suggesting that substrate biodegradability is more significant than DOC quantity determining the bacterial communities in a eutrophic lake.Environmental factors explained a larger proportion of the variation in the conditionally rare and abundant subcommunity than for the abundant and the rare bacterial subcommunities.Our findings emphasize the importance of considering bacteria with different abundance patterns and DOC biodegradability when studying the interactions between DOM and bacteria in eutrophic lakes.
基金supported by the National Natural Science Foundation of China(No.41471437)the National Key R&D Program of China(Nos.2016YFA0600801,2017YFC0504504)the West Light Foundation of the Chinese Academy of Sciences(No.XAB2016A04).
文摘Climate change and human activity have led to the degradation of desert wetlands.Free-living diazotrophs are vital for soil nitrogen input.However,a comprehensive understanding of how soil free-living diazotrophic communities and their co-occurrence patterns respond to desert wetland degradation is lacking.Here,quantitative polymerase chain reaction(qPCR),amplicon sequencing targeting nitrogenase gene(nifH),and network analysis were used to investigate the abundance,diversity,community composition,and co-occurrence patterns of soil free-living diazotrophs along the wetland degradation gradient,i.e.,non-degraded(ND),lightly degraded(LD),moderately degraded(MD),and severely degraded(SD),in the southeastern Mu Us Desert,northern China.The abundance and Shannon,Simpson,Chao 1,and ACE indexes decreased(P<0.05)by 14.6%,20.7%,2.1%,46.5%,and 45.0%,respectively,in SD wetland,whereas no significant difference(P>0.05)was observed between ND and LD wetlands.The relative abundance of Proteobacteria generally decreased(by 53.5%–19.7%)across the different degradation levels,while the relative abundance of Cyanobacteria increased(by 6.2%–40.1%)from ND to MD levels.The abundance,diversity,and community composition of diazotrophs were most strongly related to soil organic carbon,followed by total nitrogen,moisture,and pH.The least number of network nodes and edges and the lowest density were observed for MD and SD wetlands,indicating that the complexity of free-living diazotrophic networks was reduced by continued degeneration.Overall,severe desert wetland degradation affected the abundance,diversity,and network complexity of soil free-living diazotrophs more negatively than light degradation.This degradation promoted the growth of autotrophic diazotrophs and inhibited the growth of heterotrophic diazotrophs.These changes were mostly related to the loss of soil organic carbon.
基金the National Key Clinical Specialty Construction Project,No.ZK108000CAMS Innovation Fund for Medical Sciences,No.2021-I2M-C&T-A-001 and No.2022-I2M-C&T-B-012.
文摘BACKGROUND Although chronic erosive gastritis(CEG)is common,its clinical characteristics have not been fully elucidated.The lack of consensus regarding its treatment has resulted in varied treatment regimens.AIM To explore the clinical characteristics,treatment patterns,and short-term outcomes in CEG patients in China.METHODS We recruited patients with chronic non-atrophic or mild-to-moderate atrophic gastritis with erosion based on endoscopy and pathology.Patients and treating physicians completed a questionnaire regarding history,endoscopic findings,and treatment plans as well as a follow-up questionnaire to investigate changes in symptoms after 4 wk of treatment.RESULTS Three thousand five hundred sixty-three patients from 42 centers across 24 cities in China were included.Epigastric pain(68.0%),abdominal distension(62.6%),and postprandial fullness(47.5%)were the most common presenting symptoms.Gastritis was classified as chronic non-atrophic in 69.9%of patients.Among those with erosive lesions,72.1%of patients had lesions in the antrum,51.0%had multiple lesions,and 67.3%had superficial flat lesions.In patients with epigastric pain,the combination of a mucosal protective agent(MPA)and proton pump inhibitor was more effective.For those with postprandial fullness,acid regurgitation,early satiety,or nausea,a MPA appeared more promising.CONCLUSION CEG is a multifactorial disease which is common in Asian patients and has non-specific symptoms.Gastroscopy may play a major role in its detection and diagnosis.Treatment should be individualized based on symptom profile.
基金supported by grants from the Beijing Nova Program (No. Z201100006820069)CAMS Innovation Fund for Medical Sciences (CIFMS, No. 2021-I2M-1-023, 2021-I2M-1-010)Talent Incentive Program of Cancer Hospital Chinese Academy of Medical Sciences (Hope Star)。
文摘Objective: Plant-based diets have multiple health benefits for cancers;however, little is known about the association between plant-based dietary patterns and esophageal cancer(EC).This study presents an investigation of the prospective associations among three predefined indices of plant-based dietary patterns and the risk of EC.Methods: We performed endoscopic screening for 15,709 participants aged 40-69 years from two high-risk areas of China from January 2005 to December 2009 and followed the cohort until December 31, 2022. The overall plant-based diet index(PDI), healthful plant-based diet index(h PDI), and unhealthful plant-based diet index(u PDI), were calculated using survey responses to assess dietary patterns. We applied Cox proportional hazard regression to estimate the multivariable hazard ratios(HRs) and 95% confidence intervals(95% CIs) of EC across 3plant-based diet indices and further stratified the analysis by subgroups.Results: The final study sample included 15,184 participants in the cohort. During a follow-up of 219,365person-years, 176 patients with EC were identified. When the highest quartile was compared with the lowest quartile, the pooled multivariable-adjusted HR of EC was 0.50(95% CI, 0.32-0.77) for h PDI. In addition, the HR per 10-point increase in the h PDI score was 0.42(95% CI, 0.27-0.66) for ECs. Conversely, u PDI was positively associated with the risk of EC, and the HR was 1.80(95% CI, 1.16-2.82). The HR per 10-point increase in the u PDI score was 1.90(95% CI, 1.26-2.88) for ECs. The associations between these scores and the risk of EC were consistent in most subgroups. These results remained robust in sensitivity analyses.Conclusions: A healthy plant-based dietary pattern was associated with a reduced risk of EC. Emphasizing the healthiness and quality of plant-based diets may be important for preventing the development of EC.
基金jointly supported by the National Key R&D Program of China(Grant No.2022YFC3002801)the National Natural Science Foundation of China Grants(Grant Nos.42192563,42120104001)+1 种基金the National Natural Science Foundation of China for Youth(Grant No.42205191)the National Key Scientific and Technological Infrastructure project“Earth System Numerical Simulation Facility”(EarthLab).
文摘Recently,extreme meteorological droughts have affected China,causing terrible socioeconomic impacts.Despite previous research on the spatiotemporal characteristics and mechanisms of drought,two crucial issues remain seldom explored.First,an event-oriented drought chronology with detailed spatiotemporal evolutions is urgently required.Second,the complex migration patterns and diversity of synchronous temperature extremes need to be quantitatively investigated.Accordingly,the main achievements of our investigation are as follows.We produced an event-oriented set of extreme meteorological droughts over China through the application of a newly developed 3D DBSCAN-based detection method(deposited on https://doi.org/10.25452/figshare.plus.25512334),which was verified with a historical atlas and monographs on a case-by-case basis.In addition,distinctive migration patterns(i.e.,stationary/propagation types)are identified and ranked,considering the differences in latitudinal zones and coastal/inland locations.We also analyze the diversity of synchronous temperature extremes(e.g.,hotness and coldness).Notably,an increasing trend in hot droughts occurred over China since the late 1990s,predominantly appearing to the south of 30°N and north of 40°N.All drought events and synchronous temperature extremes are ranked using a comprehensive magnitude index,with the 2022 summer-autumn Yangtze River hot drought being the hottest.Furthermore,Liang-Kleeman information flow-based causality analysis emphasizes key areas where the PDO and AMO influenced decadal variations in coverages of droughts and temperature extremes.We believe that the achievements in this study may offer new insights into sequential mechanism exploration and prediction-related issues.
基金provided by the National Natural Science Foundation of China(Grants No.12272238 and No.11932013)the"Outstanding Young Scholar"Program of Shanghai Municipalthe"Dawn"Program of Shanghai Education Commission(Grant No.19SG47)。
文摘Background:Foot kinematics,such as excessive eversion and malalignment of the hindfoot,are believed to be associated with running-related injuries.The maj ority of studies to date show that different foot strike patterns influence these specific foot and ankle kinematics.However,technical deficiencies in traditional motion capture approaches limit knowledge of in vivo joint kinematics with respect to rearfoot and forefoot strike patterns(RFS and FFS,respectively).This study uses a high-speed dual fluoroscopic imaging system(DFIS)to determine the effects of different foot strike patterns on 3D in vivo tibiotalar and subtalar joints kinematics.Methods:Fifteen healthy male recreational runners underwent foot computed tomography scanning for the construction of 3-dimensional models.A high-speed DFIS(100 Hz)was used to collect 6 degrees of freedom kinematics for participants’tibiotalar and subtalar joints when they adopted RFS and FFS in barefoot condition.Results:Compared with RFS,FFS exhibited greater internal rotation at 0%-20%of the stance phase in the tibiotalar joint.The peak internal rotation angle of the tibiotalar joint under FFS was greater than under RFS(p<0.001,Cohen’s d=0.92).RFS showed more dorsiflexion at 0%-20%of the stance phase in the tibiotalar joint than FFS.RFS also presented a larger anterior translation(p<0.001,Cohen’s d=1.28)in the subtalar joint at i nitial contact than FFS.Conclusion:Running with acute barefoot FFS increases the internal rotation of the tibiotalar joint in the early stance.The use of high-speed DFIS to quantify the movement of the tibiotalar and subtalar joint was critical to revealing the effects of RF S and FFS during running.
基金supported by the National Natural Science Foundation of China(Project No.52074123).
文摘To explore the effects of freeze‒thaw cycles on the mechanical properties and crack evolution of fissured sandstone,biaxial compression experiments were carried out on sandstone subjected to freeze‒thaw cycles to characterize the changes in the physical and mechanical properties of fissured sandstone caused by freeze‒thaw cycles.The crack evolution and crack change process on the surface of the fissured sandstone were recorded and analysed in detail via digital image technology(DIC).Numerical simulation was used to reveal the expansion process and damage mode of fine-scale cracks under the action of freeze‒thaw cycles,and the simulation results were compared and analysed with the experimental data to verify the reliability of the numerical model.The results show that the mass loss,porosity,peak stress and elastic modulus all increase with increasing number of freeze‒thaw cycles.With an increase in the number of freeze‒thaw cycles,a substantial change in displacement occurs around the prefabricated cracks,and a stress concentration appears at the crack tip.As new cracks continue to sprout at the tips of the prefabricated cracks until the microcracks gradually penetrate into the main cracks,the displacement cloud becomes obviously discontinuous,and the contours of the displacement field in the crack fracture damage area simply intersect with the prefabricated cracks to form an obvious fracture.The damage patterns of the fractured sandstone after freeze‒thaw cycles clearly differ,forming a symmetrical"L"-shaped damage pattern at zero freeze‒thaw cycles,a symmetrical"V"-shaped damage pattern at 10 freeze‒thaw cycles,and a"V"-shaped damage pattern at 20 freeze‒thaw cycles.After 20 freeze‒thaw cycles,a"V"-shaped destruction pattern and"L"-shaped destruction pattern are formed;after 30 freeze‒thaw cycles,an"N"-shaped destruction pattern is formed.This shows that the failure mode of fractured sandstone gradually becomes more complicated with an increasing number of freeze‒thaw cycles.The effects of freeze‒thaw cycles on the direction and rate of crack propagation are revealed through a temperature‒load coupled model,which provides an important reference for an in-depth understanding of the freeze‒thaw failure mechanisms of fractured rock masses.
文摘The World Journal of Cardiology published an article written by Kuwahara et al that we take the pleasure to comment on.We focused our attention on venous congestion.In intensive care settings,it is now widely accepted that venous congestion is an important clinical feature worthy of investigation.Evaluating venous Doppler profile abnormalities at multiple sites could suggest adequate treatment and monitor its efficacy.Renal dysfunction could trigger or worsen fluid overload in heart disease,and cardio-renal syndrome is a well-characterized spectrum of disorders describing the complex interactions between heart and kidney diseases.Fluid overload and venous congestion,including renal venous hypertension,are major determinants of acute and chronic renal dysfunction arising in heart disease.Organ congestion from venous hypertension could be involved in the development of organ injury in several clinical situations,such as critical diseases,congestive heart failure,and chronic kidney disease.Ultrasonography and abnormal Doppler flow patterns diagnose clinically significant systemic venous congestion.Cardiologists and nephrologists might use this valuable,noninvasive,bedside diagnostic tool to establish fluid status and guide clinical choices.
基金supported by the National Natural Science Foundation of China(U22A20501)the National Key Research and Development Plan of China(2022YFD1500601)+4 种基金the National Science and Technology Fundamental Resources Investigation Program of China(2018FY100304)the Strategic Priority Research Program of the Chinese Academy of Sciences(XDA28090200)the Liaoning Province Applied Basic Research Plan Program,China(2022JH2/101300184)the Shenyang Science and Technology Plan Program,China(21-109-305)the Liaoning Outstanding Innovation Team,China(XLYC2008015)。
文摘Land use influences soil biota community composition and diversity,and then belowground ecosystem processes and functions.To characterize the effect of land use on soil biota,soil nematode communities in crop land,forest land and fallow land were investigated in six regions of northern China.Generic richness,diversity,abundance and biomass of soil nematodes was the lowest in crop land.The richness and diversity of soil nematodes were 28.8and 15.1%higher in fallow land than in crop land,respectively.No significant differences in soil nematode indices were found between forest land and fallow land,but their network keystone genera composition was different.Among the keystone genera,50%of forest land genera were omnivores-predators and 36%of fallow land genera were bacterivores.The proportion of fungivores in forest land was 20.8%lower than in fallow land.The network complexity and the stability were lower in crop land than forest land and fallow land.Soil pH,NH_(4)^(+)-N and NO_(3)^(–)-N were the major factors influencing the soil nematode community in crop land while soil organic carbon and moisture were the major factors in forest land.Soil nematode communities in crop land influenced by artificial management practices were more dependent on the soil environment than communities in forest land and fallow land.Land use induced soil environment variation and altered network relationships by influencing trophic group proportions among keystone nematode genera.
文摘Background: Cardiovascular diseases are the leading cause of death in India, with coronary artery disease (CAD) accounting for a majority of the deaths. There are few large registries on acute coronary syndrome (ACS) from India. Our aim is to study the clinical and epidemiological profile of ACS PATIENTS presenting to our institute, including their angiographic features. Methods: This hospital-based observational, single tertiary care center, prospective study was conducted on patients admitted in the Department of Cardiology at a tertiary care center in Haryana. The study included 400 patients aged greater than 18 years who were admitted with the diagnosis of ACS, and it was carried out for 1 year. The epidemiological profile, clinical history, risk factors, electrocardiogram findings, and angiographic pattern were studied and analyzed with appropriate statistical tools. Results: The mean age of the study population was 55.12 ± 11.78 years. Male and female ratio was 2.4:1. The majority of the patients came from rural background (80%);24% of the patients were illiterate. Smoking was the most common risk factor (51.5%) in our study population followed by hypertension (40%) and diabetes (28%). Unstable angina was the most common type of ACS, which was found in 68.25% of patients. Premature CAD was found in 27.8% of patients and obstructive CAD was found in 63% of patients. Coronary angiography revealed that 39% had single vessel disease (SVD), 23.5% had double vessel disease (DVD), and 27.5% had triple vessel disease (TVD). LAD was more commonly involved, followed by RCA and LCX. Within the first 24 hours, 67% of patients sought medical assistance and only 38.5% received definitive treatment, suggesting a delay in seeking definitive treatment in our study population. Conclusion: The study suggests that unstable angina is the most common form of ACS in the study population, which is mostly of rural background with significant delay in seeking medical help. Smoking is the most common risk factor in the study population.
基金Project supported by the National Natural Science Foundation of China (Grant Nos.32271293 and 11875076)。
文摘Positional information encoded in spatial concentration patterns is crucial for the development of multicellular organisms.However,it is still unclear how such information is affected by the physically dissipative diffusion process.Here we study one-dimensional patterning systems with analytical derivation and numerical simulations.We find that the diffusion constant of the patterning molecules exhibits a nonmonotonic effect on the readout of the positional information from the concentration patterns.Specifically,there exists an optimal diffusion constant that maximizes the positional information.Moreover,we find that the energy dissipation due to the physical diffusion imposes a fundamental upper limit on the positional information.
基金funded by the National Natural Science Foundation of China(42271313)the Chinese Academy of Agricultural Sciences Innovation Project(CAAS-ASTIP2021-AII)the Central Public-interest Scientific Institution Basal Research Fund,China(JBYW-AII-2022-06,JBYWAII-2022-40)。
文摘The complex and volatile international landscape has significantly impacted global grain supply security. This study uses a complex network analysis model to examine the evolution and trends of the global major grain trade from 1990 to 2020, focusing on network topology, centrality ranking, and community structure. There are three major findings. First, the global major grain trade network has expanded in scale, with a growing emphasis on diversification and balance. During the study period, the United States, Canada, China, and Brazil were the core nodes of the network. Grain-exporting countries were mainly situated in Asia, the Americas, and Europe, and importing countries in Asia, Africa, and Europe. Second, a significant increase in the number of high centrality countries with high export capacity occurred, benefiting from natural advantages such as fertile land and favorable climates. Third, the main global grain trade network is divided into four communities, with the Americas-Europe community being the largest and most widespread. The formation of the community pattern was influenced by geographic proximity, driven by the core exporting countries. Therefore, the world needs to enhance the existing trade model, promote the multi-polarization of the grain trade network, and establish a global vision for the future community. Countries and regions should participate actively in global grain trade security governance and institutional reform, expand trade links with other countries, and optimize import and export policies to reduce trade risks.