The randomness and complexity of urban traffic scenes make it a difficult task for self-driving cars to detect drivable areas, Inspired by human driving behaviors, we propose a novel method of drivable area detection ...The randomness and complexity of urban traffic scenes make it a difficult task for self-driving cars to detect drivable areas, Inspired by human driving behaviors, we propose a novel method of drivable area detection for self-driving cars based on fusing pixel information from a monocular camera with spatial information from a light detection and ranging (LIDAR) scanner, Similar to the bijection of collineation, a new concept called co-point mapping, which is a bijection that maps points from the LIDAR scanner to points on the edge of the image segmentation, is introduced in the proposed method, Our method posi- tions candidate drivable areas through self-learning models based on the initial drivable areas that are obtained by fusing obstacle information with superpixels, In addition, a fusion of four features is applied in order to achieve a more robust performance, In particular, a feature called drivable degree (DD) is pro- posed to characterize the drivable degree of the LIDAR points, After the initial drivable area is characterized by the features obtained through self-learning, a Bayesian framework is utilized to calculate the final probability map of the drivable area, Our approach introduces no common hypothesis and requires no training steps; yet it yields a state-of-art performance when tested on the ROAD-KITTI benchmark, Experimental results demonstrate that the proposed method is a general and efficient approach for detecting drivable area,展开更多
针对飞机座舱副驾驶的研究需要,为使得机械臂能够在飞机座舱完成导航任务,旨在构建一个可用于机械臂导航的飞机模拟座舱三维地图。针对特征点分布情况对即时定位与地图构建(simultaneous localization and mapping,简称SLAM)的建图精度...针对飞机座舱副驾驶的研究需要,为使得机械臂能够在飞机座舱完成导航任务,旨在构建一个可用于机械臂导航的飞机模拟座舱三维地图。针对特征点分布情况对即时定位与地图构建(simultaneous localization and mapping,简称SLAM)的建图精度的影响,通过实验对比,验证了ORB-SLAM改进的ORB(oriented FAST and rotated BRIEF)特征检测算法相对于OpenCV库中SIFT,SURF和ORB算法检测提取的特征点分布更加均匀,更适用于SLAM。采用Kinect V2.0作为深度信息图像和彩色图像的数据采集设备,在飞机模拟座舱真实的环境下,结合ROS系统和ORBSLAM2系统框架,构建了飞机座舱内的三维稠密点云地图。针对点云地图存在数据大和难以实现导航等问题,采用了OctoMap数据模型,该数据模型能够压缩点云,调节分辨率和判断空间是否被占据,将点云地图转化为八叉树地图,最终获得数据小和适用于导航的三维八叉树地图。展开更多
基金This research was partially supported by the National Natural Science Foundation of China (61773312), the National Key Research and Development Plan (2017YFC0803905), and the Program of Introducing Talents of Discipline to University (B13043).
文摘The randomness and complexity of urban traffic scenes make it a difficult task for self-driving cars to detect drivable areas, Inspired by human driving behaviors, we propose a novel method of drivable area detection for self-driving cars based on fusing pixel information from a monocular camera with spatial information from a light detection and ranging (LIDAR) scanner, Similar to the bijection of collineation, a new concept called co-point mapping, which is a bijection that maps points from the LIDAR scanner to points on the edge of the image segmentation, is introduced in the proposed method, Our method posi- tions candidate drivable areas through self-learning models based on the initial drivable areas that are obtained by fusing obstacle information with superpixels, In addition, a fusion of four features is applied in order to achieve a more robust performance, In particular, a feature called drivable degree (DD) is pro- posed to characterize the drivable degree of the LIDAR points, After the initial drivable area is characterized by the features obtained through self-learning, a Bayesian framework is utilized to calculate the final probability map of the drivable area, Our approach introduces no common hypothesis and requires no training steps; yet it yields a state-of-art performance when tested on the ROAD-KITTI benchmark, Experimental results demonstrate that the proposed method is a general and efficient approach for detecting drivable area,
文摘针对飞机座舱副驾驶的研究需要,为使得机械臂能够在飞机座舱完成导航任务,旨在构建一个可用于机械臂导航的飞机模拟座舱三维地图。针对特征点分布情况对即时定位与地图构建(simultaneous localization and mapping,简称SLAM)的建图精度的影响,通过实验对比,验证了ORB-SLAM改进的ORB(oriented FAST and rotated BRIEF)特征检测算法相对于OpenCV库中SIFT,SURF和ORB算法检测提取的特征点分布更加均匀,更适用于SLAM。采用Kinect V2.0作为深度信息图像和彩色图像的数据采集设备,在飞机模拟座舱真实的环境下,结合ROS系统和ORBSLAM2系统框架,构建了飞机座舱内的三维稠密点云地图。针对点云地图存在数据大和难以实现导航等问题,采用了OctoMap数据模型,该数据模型能够压缩点云,调节分辨率和判断空间是否被占据,将点云地图转化为八叉树地图,最终获得数据小和适用于导航的三维八叉树地图。