The kinetics of free-radical crosslinking co-polymerization(FRCCP)of acrylic acid(AA)with both methacrylic acid(MA)(PAMA hydrogel)and maleic acid(MAL)(PAMAL hydrogel)was investigated under the conditions of isothermal...The kinetics of free-radical crosslinking co-polymerization(FRCCP)of acrylic acid(AA)with both methacrylic acid(MA)(PAMA hydrogel)and maleic acid(MAL)(PAMAL hydrogel)was investigated under the conditions of isothermal conventional heating(CH)and under the conditions of microwave heating(MWH)with controlled cooling.The kinetics curves of FRCCP of PAMA and PAMAL hydrogels under the conditions of CH are described with the kinetics model of second order chemical reaction,whereas the kinetics curves under the conditions of CH are described with the kinetics model of Polany-Winger.It is proved that MWH leads to the changes in the rate of FRCCP and to the changes in the values of the kinetic parameters activation energy(Ea)and pre-exponential factor(lnA).It was found the existence of relationship between the values of the kinetic parameters calculated for MWH and CH for PAMA and PAMAL hydrogel synthesis process,which is well-known as compensation effect.The effect of MWH on the kinetics of FRCCP for PAMA and PAMAL hydrogel formation were explained by applying the model of activation by selective energy transfer(SET).The changes in kinetics model,rate of FRCCP and kinetics parameters,caused with the MWH can found wide application in designing novel technologies for obtaining polymers and for synthesis of polymers with novel physico-chemical properties.The suggested mechanism of activation for polymerisation under the conditions of MWH also enables development of novel reaction systems and technologies for polymers productions.展开更多
A series of ethylene oxide (EO)-propylene oxide (PO) randomco-polymers (EOPO) were used to form aqueous two-phase systems (ATPS)with ammonium sulfate. Effects of EOPO's properties on the phaseseparation behaviors ...A series of ethylene oxide (EO)-propylene oxide (PO) randomco-polymers (EOPO) were used to form aqueous two-phase systems (ATPS)with ammonium sulfate. Effects of EOPO's properties on the phaseseparation behaviors and on the partition of cephalexin and7-aminodesacetoxicephalosporanic acid (7-ADCA) in ATPS wereinvestigated. Both the molar mass and molar ratio of EO to PO of EOPOcould greatly influence partition behaviors of cephalexin and 7-ADCAas well as the binodal curve of ATPS.展开更多
Oxidation of aliphatic and aromatic halides by N-oxide functionalities supported on 4- vinyl pyridine, (4-VP), grafted cellulose is reported in the present manuscript. Synthesis of graft copolymer of cellulose and pol...Oxidation of aliphatic and aromatic halides by N-oxide functionalities supported on 4- vinyl pyridine, (4-VP), grafted cellulose is reported in the present manuscript. Synthesis of graft copolymer of cellulose and poly 4-vinyl pyridine, poly(4-VP), has been carried out using ceric ions as redox initiator. Post-grafting treatment of CellO-g-poly (4-VP) with 30% H2O2 in acetic acid gives Cellulose-g-poly (4-VP) N-oxide, the polymeric supported oxidizing reagent. The polymeric support, CellO-g-poly (4-VP) N-oxide, has been used for oxidation reactions of different alkyl / aryl halide such as 1-bromo-3-methyl butane, 2-bromo propane,1-bromo heptane and benzyl chloride. The polymeric reagent was characterized by IR and thermo-gravimetric analysis. The oxidized products were characterized by FTIR and H1NMR spectral methods. The reagent was reused for the oxidation of a fresh alkyl / aryl halides and it was observed that the polymeric reagent oxidizes the compounds successfully but with little lower product yield.展开更多
Modified diphenyl oxide resin was synthesized by co-polymerization of unsaturated acid and diphenyl oxide derivants. And then modified bismaleimide resin and expoxide linear phenolic resin were added into modified dip...Modified diphenyl oxide resin was synthesized by co-polymerization of unsaturated acid and diphenyl oxide derivants. And then modified bismaleimide resin and expoxide linear phenolic resin were added into modified diphenyl oxide resin to co-polymerize and modify once more. The system was applied in composites. Their properties were investigated and found that they met the requirements as a heat-resisting adhesive.展开更多
High performance thermal insulation materials are urgently demanded for energy saving and thermal protection applications.Organic aerogels are considered as promising and highly efficient thermal insulation materials,...High performance thermal insulation materials are urgently demanded for energy saving and thermal protection applications.Organic aerogels are considered as promising and highly efficient thermal insulation materials,but high shrinkage has been a major obstacle to limit their development and application.Herein,by a co-polymerization of formaldehyde(F)and benzoxazine prepolymers,polybenzoxazine with increased crosslink density and thus enhanced gel strength was formed,leading to low shrinkage polybenzoxazine(PBOF)aerogels with hierarchical micro/nanostructures.The hierarchical porous nanoskeleton of PBOF aerogels,composed of stacked thick-united spherical nanoparticles,was formed due to the different solubility of the reactants in N,N-dimethylformamide and F aqueous solution.Benefitting from the low shrinkage(13.22%,exceeding 60%reduction),the PBOF aerogels exhibit a low thermal conductivity of 0.0397 W m^(−1)K^(−1)at room temperature and outstanding thermal protection ability at high temperature.A 13 mm thick sample could resist a butane flame of 1300°C for 90 s,and the hand was not burn when touching the back.This strategy enables PBOF aerogels with a new perspective for their applications in civil and military fields.展开更多
Developing an efficient freshwater and electricity co-generation device(FECGD)can solve the shortage of freshwater and electricity.However,the poor salt resistance and refrigeration properties of the materials for FEC...Developing an efficient freshwater and electricity co-generation device(FECGD)can solve the shortage of freshwater and electricity.However,the poor salt resistance and refrigeration properties of the materials for FECGD put big challenges in the efficient and stable operation of these devices.To address these issues,we propose the covalent organic framework(COF)confined co-polymerization strategy to prepare COF-modified acrylamide cationic hydrogels(ACH-COF),where hydrogen bonding interlocking between negatively charged polymer chains and COF pores can form a salt resistant hydrogel for stabilizing tunable passive interfacial cooling(TPIC).The FECPDs based on the TPIC and salt resistance of ACH-COF display a maximum output power density of 2.28 W m-2,which is 4.3 times higher than that of a commercial thermoelec-tric generator under one solar radiation.The production rate of freshwater can reach 2.74 kg m-2 h-1.Our results suggest that the high efficiency and scala-bility of the FECGD can hold the promise of alleviating freshwater and power shortages.展开更多
A new open-tubular capillary electrochromatography (OT-CEC) method for analysis of β-lactam antibiotics has been developed with unique block co-polymer coating. To obtain the highly ordered block polymer chains, reve...A new open-tubular capillary electrochromatography (OT-CEC) method for analysis of β-lactam antibiotics has been developed with unique block co-polymer coating. To obtain the highly ordered block polymer chains, reversible addition fragmentation chain transfer radical polymerization method was used to synthesize poly (maleic anhydride-styrene-N-isopropylacrylamide). The prepared block copolymer coating was characterized with NMR, fourier transform infrared spectroscopy and scanning electron microscope. Several key separation factors of OT-CEC, which including polymer amount,stability of the coating, temperature, species of organic additives, buffer pH and concentration, were investigated in detail. Our results indicated that the separation efficiency was improved greatly with the coating capillary and the three test analytes could be baseline separated. Then, the separation mechanism was briefly explored. Moreover, the proposed OT-CEC method displayed promising quantitative analysis property of the three test analytes with good linearity (R2>0.99), repeatability (relative standard deviations <0.9%) and high recovery (95.4%-106.2%). Further, the assay was applied in monitoring the three test β-lactam antibiotics (cephradine, cephalexin and amoxicillin) in serum samples, providing a useful platform for construction of novel polymer coatings in OT-CEC system and for analysis of drugs in real bio-samples.展开更多
A series of half-titanocene chloride 2-(benzimidazol-2-yl)quinolin-8-olates C1-C6 were synthesized by treating the lithium salts of the ligand with CpTiCI3. All the complexes were characterized by 1H-NMR, 13C-NMR an...A series of half-titanocene chloride 2-(benzimidazol-2-yl)quinolin-8-olates C1-C6 were synthesized by treating the lithium salts of the ligand with CpTiCI3. All the complexes were characterized by 1H-NMR, 13C-NMR and elemental analyses, and the crystal structure of C3 and C6 was measured by X-ray. These half-titanocene complexes showed moderate catalytic activities toward ethylene polymerization (up to 1840 kg·mol-1(Ti)·h-1) when activated with MMAO, affording the high molecular weight polymers. And they also exhibited good activity for copolymerization of ethylene and a-olefin with low content of co-monomer.展开更多
In this work, a fully rigid coplanar symmetric heterocyclic unit was introduced into the rigid polyimide macromolecular backbone structure to prepare high-performance polyimide fibers. The novel co-polyimide(co-PI) fi...In this work, a fully rigid coplanar symmetric heterocyclic unit was introduced into the rigid polyimide macromolecular backbone structure to prepare high-performance polyimide fibers. The novel co-polyimide(co-PI) fibers based on 3,3',4,4'-biphenyltetracarboxylic anhydride(BPDA), p-phenylenediamine(PDA) and 2,6-(4,4'-diaminodiphenyl) benzo[1,2-d:5,4-d'] bisoxazole(PBOA) were fabricated via a twostep wet-spinning method. The effects of benzobisoxazole moiety on spinnability, aggregation structure, and mechanical properties of fibers were systematically discussed. The detailed structural analysis revealed that the well-defined aggregation structures of co-PI fibers were obtained from initial amorphous structure when post hot-drawing temperature was higher than 460 ℃ under proper drawing ratio, and the incorporation PBOA into BPDA-PDA structures produced more compact structural co-PI fiber than homo BPDA-PDA fiber. The BPDA-PDA/PBOA co-PI fibers exhibited optimum tensile strength and modulus of 2.65 and 103 GPa, which increased by 182% and 84% compared to the homo BPDA-PDA fiber, respectively.展开更多
Functional polymers such as polyethylene grafted glycidyl methacrylate (PE-g-GMA) and ethylene-methyl acrylate-glycidyl methacrylate terpolymer (E/MA/GMA) were used as compatibilizers in the preparation of highly ...Functional polymers such as polyethylene grafted glycidyl methacrylate (PE-g-GMA) and ethylene-methyl acrylate-glycidyl methacrylate terpolymer (E/MA/GMA) were used as compatibilizers in the preparation of highly filled composites of polyethylene/magnesium hydroxide(PE/MH). Comparative studies were performed on the effect of magnesium hydroxide and stearic acid on the interface within polymer and magnesium hydroxide composites. The effect of polymeric compatibilizers on the properties of the composites was studied using tensile and impact tests, torque rheological analysis, differential scanning calorimetry and environmental scanning electron microscopy (ESEM). The microstructure of highly filled PE/MH composites changed after the addition of functional polymers. The mechanical properties of the composite material increased after compatibilization. The compatibilization processes of PE-g-GMA and E/MA/GMA were different. The grafted polymer was more compatible with polyethylene, which led to a polar polymer phase. In contrast, the tercopolymer tended to adhere to the surface of MH particles.展开更多
基金the Ministry of Science and Technical Development of the Republic of Serbia,through Project No.172015 OI.
文摘The kinetics of free-radical crosslinking co-polymerization(FRCCP)of acrylic acid(AA)with both methacrylic acid(MA)(PAMA hydrogel)and maleic acid(MAL)(PAMAL hydrogel)was investigated under the conditions of isothermal conventional heating(CH)and under the conditions of microwave heating(MWH)with controlled cooling.The kinetics curves of FRCCP of PAMA and PAMAL hydrogels under the conditions of CH are described with the kinetics model of second order chemical reaction,whereas the kinetics curves under the conditions of CH are described with the kinetics model of Polany-Winger.It is proved that MWH leads to the changes in the rate of FRCCP and to the changes in the values of the kinetic parameters activation energy(Ea)and pre-exponential factor(lnA).It was found the existence of relationship between the values of the kinetic parameters calculated for MWH and CH for PAMA and PAMAL hydrogel synthesis process,which is well-known as compensation effect.The effect of MWH on the kinetics of FRCCP for PAMA and PAMAL hydrogel formation were explained by applying the model of activation by selective energy transfer(SET).The changes in kinetics model,rate of FRCCP and kinetics parameters,caused with the MWH can found wide application in designing novel technologies for obtaining polymers and for synthesis of polymers with novel physico-chemical properties.The suggested mechanism of activation for polymerisation under the conditions of MWH also enables development of novel reaction systems and technologies for polymers productions.
基金Supported by the National Natural Science Foundation of China (No. 29873014) and the Key Disciplinary Foundation of Shanghai.
文摘A series of ethylene oxide (EO)-propylene oxide (PO) randomco-polymers (EOPO) were used to form aqueous two-phase systems (ATPS)with ammonium sulfate. Effects of EOPO's properties on the phaseseparation behaviors and on the partition of cephalexin and7-aminodesacetoxicephalosporanic acid (7-ADCA) in ATPS wereinvestigated. Both the molar mass and molar ratio of EO to PO of EOPOcould greatly influence partition behaviors of cephalexin and 7-ADCAas well as the binodal curve of ATPS.
文摘Oxidation of aliphatic and aromatic halides by N-oxide functionalities supported on 4- vinyl pyridine, (4-VP), grafted cellulose is reported in the present manuscript. Synthesis of graft copolymer of cellulose and poly 4-vinyl pyridine, poly(4-VP), has been carried out using ceric ions as redox initiator. Post-grafting treatment of CellO-g-poly (4-VP) with 30% H2O2 in acetic acid gives Cellulose-g-poly (4-VP) N-oxide, the polymeric supported oxidizing reagent. The polymeric support, CellO-g-poly (4-VP) N-oxide, has been used for oxidation reactions of different alkyl / aryl halide such as 1-bromo-3-methyl butane, 2-bromo propane,1-bromo heptane and benzyl chloride. The polymeric reagent was characterized by IR and thermo-gravimetric analysis. The oxidized products were characterized by FTIR and H1NMR spectral methods. The reagent was reused for the oxidation of a fresh alkyl / aryl halides and it was observed that the polymeric reagent oxidizes the compounds successfully but with little lower product yield.
文摘Modified diphenyl oxide resin was synthesized by co-polymerization of unsaturated acid and diphenyl oxide derivants. And then modified bismaleimide resin and expoxide linear phenolic resin were added into modified diphenyl oxide resin to co-polymerize and modify once more. The system was applied in composites. Their properties were investigated and found that they met the requirements as a heat-resisting adhesive.
基金supported by the National Key Research and Development Program of China(2022YFC2204403)the Key Research and Development Plan of Hunan(2022GK2027)the Natural Science Foundation of Hunan(2023JJ30632).
文摘High performance thermal insulation materials are urgently demanded for energy saving and thermal protection applications.Organic aerogels are considered as promising and highly efficient thermal insulation materials,but high shrinkage has been a major obstacle to limit their development and application.Herein,by a co-polymerization of formaldehyde(F)and benzoxazine prepolymers,polybenzoxazine with increased crosslink density and thus enhanced gel strength was formed,leading to low shrinkage polybenzoxazine(PBOF)aerogels with hierarchical micro/nanostructures.The hierarchical porous nanoskeleton of PBOF aerogels,composed of stacked thick-united spherical nanoparticles,was formed due to the different solubility of the reactants in N,N-dimethylformamide and F aqueous solution.Benefitting from the low shrinkage(13.22%,exceeding 60%reduction),the PBOF aerogels exhibit a low thermal conductivity of 0.0397 W m^(−1)K^(−1)at room temperature and outstanding thermal protection ability at high temperature.A 13 mm thick sample could resist a butane flame of 1300°C for 90 s,and the hand was not burn when touching the back.This strategy enables PBOF aerogels with a new perspective for their applications in civil and military fields.
基金National Natural Science Foundation of China,Grant/Award Numbers:22108125,22175094Natural Science Foundation of Jiangsu Province,Grant/Award Number:BK20210627+1 种基金China Postdoctoral Science Foundation,Grant/Award Number:2023M730484Postgraduate Research&Practice Innovation Program of Jiangsu Province,Grant/Award Number:KYCX23_1173。
文摘Developing an efficient freshwater and electricity co-generation device(FECGD)can solve the shortage of freshwater and electricity.However,the poor salt resistance and refrigeration properties of the materials for FECGD put big challenges in the efficient and stable operation of these devices.To address these issues,we propose the covalent organic framework(COF)confined co-polymerization strategy to prepare COF-modified acrylamide cationic hydrogels(ACH-COF),where hydrogen bonding interlocking between negatively charged polymer chains and COF pores can form a salt resistant hydrogel for stabilizing tunable passive interfacial cooling(TPIC).The FECPDs based on the TPIC and salt resistance of ACH-COF display a maximum output power density of 2.28 W m-2,which is 4.3 times higher than that of a commercial thermoelec-tric generator under one solar radiation.The production rate of freshwater can reach 2.74 kg m-2 h-1.Our results suggest that the high efficiency and scala-bility of the FECGD can hold the promise of alleviating freshwater and power shortages.
基金financial support from the National Natural Science Foundation of China (Nos. 21727809, 21635008, 21621062)Chinese Academy of Sciences(No. QYZDJ-SSW-SLH034)
文摘A new open-tubular capillary electrochromatography (OT-CEC) method for analysis of β-lactam antibiotics has been developed with unique block co-polymer coating. To obtain the highly ordered block polymer chains, reversible addition fragmentation chain transfer radical polymerization method was used to synthesize poly (maleic anhydride-styrene-N-isopropylacrylamide). The prepared block copolymer coating was characterized with NMR, fourier transform infrared spectroscopy and scanning electron microscope. Several key separation factors of OT-CEC, which including polymer amount,stability of the coating, temperature, species of organic additives, buffer pH and concentration, were investigated in detail. Our results indicated that the separation efficiency was improved greatly with the coating capillary and the three test analytes could be baseline separated. Then, the separation mechanism was briefly explored. Moreover, the proposed OT-CEC method displayed promising quantitative analysis property of the three test analytes with good linearity (R2>0.99), repeatability (relative standard deviations <0.9%) and high recovery (95.4%-106.2%). Further, the assay was applied in monitoring the three test β-lactam antibiotics (cephradine, cephalexin and amoxicillin) in serum samples, providing a useful platform for construction of novel polymer coatings in OT-CEC system and for analysis of drugs in real bio-samples.
基金supported by NSFC (No. 20904059)Key Project of 863 Program of China(No. 2009AA034605)
文摘A series of half-titanocene chloride 2-(benzimidazol-2-yl)quinolin-8-olates C1-C6 were synthesized by treating the lithium salts of the ligand with CpTiCI3. All the complexes were characterized by 1H-NMR, 13C-NMR and elemental analyses, and the crystal structure of C3 and C6 was measured by X-ray. These half-titanocene complexes showed moderate catalytic activities toward ethylene polymerization (up to 1840 kg·mol-1(Ti)·h-1) when activated with MMAO, affording the high molecular weight polymers. And they also exhibited good activity for copolymerization of ethylene and a-olefin with low content of co-monomer.
基金financially supported by the National Natural Science Foundation of China (Nos. 51903038 and 21975040)Guangdong Basic and Applied Basic Research Foundation (No. 2020A1515110897)。
文摘In this work, a fully rigid coplanar symmetric heterocyclic unit was introduced into the rigid polyimide macromolecular backbone structure to prepare high-performance polyimide fibers. The novel co-polyimide(co-PI) fibers based on 3,3',4,4'-biphenyltetracarboxylic anhydride(BPDA), p-phenylenediamine(PDA) and 2,6-(4,4'-diaminodiphenyl) benzo[1,2-d:5,4-d'] bisoxazole(PBOA) were fabricated via a twostep wet-spinning method. The effects of benzobisoxazole moiety on spinnability, aggregation structure, and mechanical properties of fibers were systematically discussed. The detailed structural analysis revealed that the well-defined aggregation structures of co-PI fibers were obtained from initial amorphous structure when post hot-drawing temperature was higher than 460 ℃ under proper drawing ratio, and the incorporation PBOA into BPDA-PDA structures produced more compact structural co-PI fiber than homo BPDA-PDA fiber. The BPDA-PDA/PBOA co-PI fibers exhibited optimum tensile strength and modulus of 2.65 and 103 GPa, which increased by 182% and 84% compared to the homo BPDA-PDA fiber, respectively.
文摘Functional polymers such as polyethylene grafted glycidyl methacrylate (PE-g-GMA) and ethylene-methyl acrylate-glycidyl methacrylate terpolymer (E/MA/GMA) were used as compatibilizers in the preparation of highly filled composites of polyethylene/magnesium hydroxide(PE/MH). Comparative studies were performed on the effect of magnesium hydroxide and stearic acid on the interface within polymer and magnesium hydroxide composites. The effect of polymeric compatibilizers on the properties of the composites was studied using tensile and impact tests, torque rheological analysis, differential scanning calorimetry and environmental scanning electron microscopy (ESEM). The microstructure of highly filled PE/MH composites changed after the addition of functional polymers. The mechanical properties of the composite material increased after compatibilization. The compatibilization processes of PE-g-GMA and E/MA/GMA were different. The grafted polymer was more compatible with polyethylene, which led to a polar polymer phase. In contrast, the tercopolymer tended to adhere to the surface of MH particles.