Kr and Xe nuclide abundance and isotopic ratios of the uppermost layer of Fe-Mn Crusts from the western and central Pacific Ocean have been determined. The results indicate that the Kr and Xe isotopic composi-tions, l...Kr and Xe nuclide abundance and isotopic ratios of the uppermost layer of Fe-Mn Crusts from the western and central Pacific Ocean have been determined. The results indicate that the Kr and Xe isotopic composi-tions, like that of He, Ne and Ar, can be classified into two types: low3He/4He type and high3He/4He type. The low3He/4He type crusts have low84Kr and132Xe abundance, while the high3He/4He type crusts have high84Kr and132Xe abundance. The82Kr/84Kr ratios of the low3He/4He type crusts are lower than that of the air, while the83Kr/84Kr and86Kr/84Kr ratios are higher than those of the air. The Kr isotopic ratios of the high-er3He/4He type crusts are quite similar to those of the air. The128Xe/132Xe,130Xe/132Xe and131Xe/132Xe ratios of the low3He/4He type sample are distinctly lower than those of the air, whereas the129Xe/132Xe,134Xe/132Xe and136Xe/132Xe ratios are higher than those of the air. The low3He/4He type samples have the diagnostic characteristics of the MORB, with excess129, 131, 132, 134, 136Xe relative to130Xe compared with the solar wind. The128Xe/132Xe,130Xe/132Xe and131Xe/132Xe ratios of the high3He/4He type samples are slightly higher than those of the air, and the129Xe/132Xe,134Xe/132Xe and136Xe/132Xe ratios are qiute similar to those of the air. The noble gases in the Fe-Mn crusts are derived from the lower mantle, and they are a mixture of lower mantle primitive component, radiogenic component and subduction recycled component. The helium isotopic ra-tios of the low mantle reservoir are predominantly controlled by primitive He (3He) and U and Th radiogenic decayed He (4He), but the isotopic ratios of the heavier noble gases, such as Ar, Kr and Xe, are controlled to different extent by recycling of subduction components. The difference of the noble isotopic compositions of the two type crusts is the result of the difference of the noble isotopic composition of the mantle source reservoir underneath the seamounts the crusts occurred, the noble gases of the high3He/4He type crusts are derived mainly from EM-type lower mantle reservoir, and the noble gases in the low3He/4He type crusts are derived mainly from HIMU-type lower mantle reservoir.展开更多
The current advances in the study of geochemistry and paleo-oceanography of the Co-rich crust are reviewed in this paper. We summarize the study of geochemistry of the Co-rich crust, discuss the diffusion of elements ...The current advances in the study of geochemistry and paleo-oceanography of the Co-rich crust are reviewed in this paper. We summarize the study of geochemistry of the Co-rich crust, discuss the diffusion of elements in the Co-rich crust and the exchange with ambient seawater. Besides, we discuss the effect of phosphatization and substrate rocks on the composition of the Co-rich crust. We also introduce the application of stable isotopes(including the stable isotopes of Pb, Nd, and Hf), radioactive isotopes (including the radioactive isotopes of Be, U and Th), and elements (including the major elements, minor elements and rare earth elements) to the study of paleo-oceanography of the Co-rich crust.展开更多
For optimizing the cutting depth of spiral drum type cutting head,the relations among collecting ratio,interfusing ratio of mullock and cutting depth of the mining cobalt-rich crusts in ocean were discussed.Furthermor...For optimizing the cutting depth of spiral drum type cutting head,the relations among collecting ratio,interfusing ratio of mullock and cutting depth of the mining cobalt-rich crusts in ocean were discussed.Furthermore,the multi-extremum problem about cutting depth was analyzed in mining at a certain interfusing ratio of mullock.Through introducing genetic algorithm(GA),the cutting depth-control problem when the collecting ratio is maximized by controlling the interfusing ratio of mullock was solved with global-optimization-search algorithms.Then optimization theory for cutting depth in mining cobalt-rich crusts by GA,and computer programming were given to realize the algorithm.The computation result of actual data proves the validity of this method.展开更多
A detailed study on a small scale of the effect of phosphatization on the chemistry of marine cobalt-rich ferromanganese crusts supplies useful information for the evaluation and comprehensive utilization of crust min...A detailed study on a small scale of the effect of phosphatization on the chemistry of marine cobalt-rich ferromanganese crusts supplies useful information for the evaluation and comprehensive utilization of crust mineral resources. Sub-samples from top to bottom of a 10-cm thick sample from the NW Pacific Magellan seamount were taken at 5 mm intervals. The concentration profiles of ore-forming and rare earth elements show that obvious differences exist between young unphosphatized crusts and old phosphatized crusts. In the old crusts Fe, Mn, Si, Al, Zn, Mg, Co, Ni and Cu elements are depleted and Ca, P, Sr, Ba and Pb elements are enriched. The order of depletion is Co > Ni > Mg > Al > Mn > Si> Cu > Zn > Fe, while the order of enrichment is P > Ca > Ba > Pb > Sr. The phosphate mineral controls the concentration variation of the ore-forming elements in crusts and causes loss of the main ore-forming elements such as Co and Ni. The phosphatization also affects the abundance of REEs in the crusts. REEs are more abundant and the content of Ce in old crusts is higher than that in young crusts, however, the pattern of REEs and their fractionation characteristics in new and old crusts are not fundamentally changed. A Y-positive anomaly in old crusts has no relationship to the phosphatization.展开更多
Based on the survey data of five submarine seamount provinces (chains) in the Western Pacific, the distribution characteristics of cobalt-rich ferromanganese crust resources have been researched in this paper by usi...Based on the survey data of five submarine seamount provinces (chains) in the Western Pacific, the distribution characteristics of cobalt-rich ferromanganese crust resources have been researched in this paper by using the relative reference data and applying the theories of hotspot and seafloor spreading. The main research results obtained are as follows: The Co-rich crust thickness in the study area is gradually increasing from east to west and from south to north having a negative correlation (r = -0.59) with longitude and a positive correlation (r = 0.48) with latitude. The crust thickness varying along longitude and latitude is influenced by the hotspot and seafloor spreading. The oceanic crusts and seamounts in the northwest part of the study area are older, and the crust resources are superior to those in the southeast part. In the depth of 〈1500 m, 1500-2000 m, 2000-2500 m in the study area, the cobalt crust thickness is respectively 5.45 cm, 4.34 cm and 3.55 cm, and in the depth of 2500-3000 m and 3000-3500 m, it drops respectively to 2.84 cm and 3.37 cm. The Co-rich crust resources are mainly concentrated in the seamount summit margins and the upper flanks in the depth of 〈2500 m. There is a strong negative correlation (r = -0.67) between the cobalt crust abundance and the slope of the seamount, 75 kg/m^2 and 50 kg/mz at the slopes of 0°-20° and 20°-34° respectively. Cobalt crusts are mainly distributed in the parts whose slopes are less than 20°. It is consistent with the fractal result that the slope threshold of cobalt crust distribution is 19°, and slopes over 20° are not conducive to the crust growth. The cobalt crusts of high grade are mainly enriched in the region within 150°E-140°W and 30°S-30°N in the Pacific, where there are about 587 seamounts at the depth of 3500- 6000 m and over 30 Ma of the oceanic crusts. The perspective area rich in cobalt crust resources is about 41×104 km^2 and the resource quantity is approximately 27 billion tons.展开更多
Co-rich seamount crusts have been shown to possess great potential for providing information on paleoceanographic and paleoclimatic changes. High resolution data are essential to decipher and correctly understand such...Co-rich seamount crusts have been shown to possess great potential for providing information on paleoceanographic and paleoclimatic changes. High resolution data are essential to decipher and correctly understand such high-density records. With the development of modern microprobe techniques, detailed sampling of crusts can be performed and it is possible to retrieve detailed information about envi- ronmental changes recorded in the seamount crusts. We report here geochemical results of more than 40 elements (including all rare earth elements) of four Co-rich seamount crust samples, which were collected from seamounts in the central and western Pacific Ocean. These data were obtained with two micro-probe techniques: Electron Probe Micro Analyzer and Laser Ablation Inductively Coupled Plasma Mass Spectrometry. The chronological framework of the seamount crust samples was determined using the cos- mogenic 10Be and the Co-chronometer. Records of elemental composition, P, and Al/(Fe + Mn) and Y/Ho ratios across the sections of the four samples are used to identify paleoceanographic and paleoclimatic events over the past ~30 Ma. These data show that: (1) Al/(Fe + Mn) in the western Pacific seamount crust is a useful proxy for the assessment of changes of source materials related to the variability of the Asian monsoon; (2) P and Y/Ho can be used as proxies to infer biogenic episodes. Finally we discuss the methodology related to dating and micro-probe analysis used in crust study.展开更多
Up to now, accurate determination of the growth age and hiatuses of the Co-rich crust is still a difficult work, which constrains the researches on the genesis, growth process, controlling factors, regional tectonics,...Up to now, accurate determination of the growth age and hiatuses of the Co-rich crust is still a difficult work, which constrains the researches on the genesis, growth process, controlling factors, regional tectonics, paleo-oceanographic background, etc. of the Co-rich crust. This paper describes our work in determining the initial growth age of the Co-rich crust to be of the late Cretaceous Campanian Stage (about 75-80 Ma), by selecting the Co-rich crust with clear multi-layer structures in a central Pacific seamount for layer-by-layer sample analysis and using a number of chronological methods, such as Co flux dating, dating by correlation with 187Os/188Os evolution curves of seawater, and stratigraphic divi- sion by calcareous nannofossils. We have also discovered growth hiatuses with different time intervals in the early Paleocene, middle Eocene, late Eocene and early-middle Miocene, respectively. These re- sults have provided an important age background for further researches on the Co-rich crust growth process and the paleo-oceanographic environment evolution thereby revealed in the said region.展开更多
Due to their slow growth rates, seamount Co-rich crusts are very difficult to date with high resolution and precision. This paper is to test the use of orbital pacing on the growth profile of crusts to determine high-...Due to their slow growth rates, seamount Co-rich crusts are very difficult to date with high resolution and precision. This paper is to test the use of orbital pacing on the growth profile of crusts to determine high-resolution age and growth rate. Crust CB14 from the central Pacific Ocean was selected for this study. We first examined the growth pattern in detail under a reflected-light microscope and ascertained that the growth environment was stable for the sub-layer 1 (0-3 mm). We then used electron micro-probe line-scanning to obtain elemental profiles. The pattern of the power spectrum analysis of the Al-profile revealed that there are significant cycles of 113.9, 87.8, 51.5, 42.2 and 25.8 μm. These cycles correspond to the Milankovitch cycles of 53.1, 41, 24, 19.7 and 12 ka, respectively, and yield the growth rate of about 2.14 mm/Ma and an age of about 1.40 Ma for the boundary between the sub-layer 1 and sub-layer 2. We also used a drilling machine with a numerically controlled drive to obtain high-resolution samples at 0.1mm intervals, and used the 230Thex/232Th method to date the samples. For the uppermost 1.3 mm, the growth rate was about 2.15 mm/Ma, and the age for the layer at the depth of 3 mm was about 1.40 Ma, which coincides perfectly with the results obtained from orbital pacing. Thus, it is considered that orbital pacing is a new and effective method to determine the growth rate of the seamount Co-rich crust. This method is applicable for establishing a high-resolution age frame for the crusts of the world's oceans.展开更多
I. INTRODUCTIONA lot of work on marine Fe-Mn nodules has been done. However, few reports about the study of Fe-Mn nodules in the Mariana Ridge and the West Philippine Basin are known. The purpose of this note is to re...I. INTRODUCTIONA lot of work on marine Fe-Mn nodules has been done. However, few reports about the study of Fe-Mn nodules in the Mariana Ridge and the West Philippine Basin are known. The purpose of this note is to report in detail the geochemical characteristics展开更多
The noble gas nuclide abundances and isotopic ratios of the upmost layer of Fe-Mn crusts from the western and central Pacific Ocean have been determined. The results indicate that the He and Ar nuclide abundances and ...The noble gas nuclide abundances and isotopic ratios of the upmost layer of Fe-Mn crusts from the western and central Pacific Ocean have been determined. The results indicate that the He and Ar nuclide abundances and isotopic ratios can be classified into two types: low 3He/4He type and high 3He/4He type. The low 3He/4He type is characterized by high 4He abundances of 191×10?9 cm3·STP·g?1 on average, with variable 4He, 20Ne and 40Ar abundances in the range (42.8?421)×10?9 cm3·STP·g?1, (5.40?141)×10?9 cm3·STP·g?1, and (773?10976)×10?9 cm3·STP·g?1, respectively. The high 3He/4He samples are characterized by low 4He abundances of 11.7×10?9 cm3·STP·g?1 on average, with 4He, 20Ne and 40Ar abundances in the range of (7.57?17.4)×10?9 cm3·STP·g?1, (10.4?25.5)×10?1 cm3·STP·g?1 and (5354?9050)×10?9 cm3·STP·g?1, respectively. The low 3He/4He samples have 3He/4He ratios (with R/RA ratios of 2.04?2.92) which are lower than those of MORB (R/R A=8±1) and 40Ar/36Ar ratios (447?543) which are higher than those of air (295.5). The high 3He/4He samples have 3He/4He ratios (with R/R A ratios of 10.4?12.0) slightly higher than those of MORB (R/R A=8±1) and 40Ar/36Ar ratios (293?299) very similar to those of air (295.5). The Ne isotopic ratios (20Ne/22Ne and 21Ne/22Ne ratios of 10.3?10.9 and 0.02774?0.03039, respectively) and the 38Ar/36Ar ratios (0.1886?0.1963) have narrow ranges which are very similar to those of air (the 20Ne/22Ne, 21Ne/22Ne, 38Ar/36Ar ratios of 9.80, 0.029 and 0.187, respectively), and cannot be differentiated into different groups. The noble gas nuclide abundances and isotopic ratios, together with their regional variability, suggest that the noble gases in the Fe-Mn crusts originate primarily from the lower mantle. The low 3He/4He type and high 3He/4He type samples have noble gas characteristics similar to those of HIMU (High U/Pb Mantle)-and EM (Enriched Mantle)-type mantle material, respectively. The low 3He/4He type samples with HIMU-type noble gas isotopic ratios occur in the Magellan Seamounts, Marcus-Wake Seamounts, Marshall Island Chain and the Mid-Pacific Seamounts whereas the high 3He/4He type samples with EM-type noble gas isotopic ratios occur in the Line Island Chain. This difference in noble gas characteristics of these crust types implies that the Magellan Seamounts, Marcus-Wake Seamounts, Marshall Island Chain, and the Mid-Pacific Seamounts originated from HIMU-type lower mantle material whereas the Line Island Chain originated from EM-type lower mantle material. This finding is consistent with variations in the Pb-isotope and trace element signatures in the seamount lavas. Differences in the mantle source may therefore be responsible for variations in the noble gas abundances and isotopic ratios in the Fe-Mn crusts. Mantle degassing appears to be the principal factor controlling noble gas isotopic abundances in Fe-Mn crusts. Decay of radioactive isotopes has a negligible influence on the nuclide abundances and isotopic ratios of noble gases in these crusts on the timescale of their formation.展开更多
Based on its microstructure, Co-rich crust A1-1 from seamount Allison, central Pacific, was scraped at averaged interval of 1.3 mm to measure osmium isotopic composition, and subsequently to establish the 187Os/188Os ...Based on its microstructure, Co-rich crust A1-1 from seamount Allison, central Pacific, was scraped at averaged interval of 1.3 mm to measure osmium isotopic composition, and subsequently to establish the 187Os/188Os profile of scraping section of the crust. By observing the variation of 187Os/188Os under 10Be chronology and matching it to the well-known seawater Os isotope evolution of the past 40 Ma, two growth hiatuses (H1 and H2) occurring in the periods respectively between 13.6 and 29.6 Ma and between 8 and 9.8 Ma in the crust were recognized. According to the two hiatuses, the dating scheme for each scraped layer of the crust was suggested. For the upper layers younger than 6.8Ma, their growth ages were calibrated under 10Be chronology; for the lower layers older than 6.8Ma, their growth ages were obtained from 187Os/188Os evaluation curve by linear interpolation. Hereby, the age for the most inner layer of the crust was determined to be 39.5 Ma. H1 and H2 exactly correspond to the boundary between phosphatization and non-phosphatization and volcanic ash layer in the crust, respectively.展开更多
Polymetallic nodules and cobalt (Co)-rich crusts are enriched in platinum-group elements (PGEs),especially platinum (Pt) and may be important sinks of PGEs.At present,little information is available on PGEs in polymet...Polymetallic nodules and cobalt (Co)-rich crusts are enriched in platinum-group elements (PGEs),especially platinum (Pt) and may be important sinks of PGEs.At present,little information is available on PGEs in polymetallic nodules,and their geochemical characteristics and the causes of PGEs enrichment are unclear.Here PGEs of polymetallic nodules from abyssal basin in the Marcus-Wake Seamount area of the Northwest Pacific Ocean are reported and compared with the published PGEs data of polymetallic nodules and Co-rich crusts in the Pacific.The total PGEs (ΣPGE) content of polymetallic nodules in study area is 258×10^–9) in average,markedly higher than that of Clarion-Clipperton Zone (CCZ) nodules (ΣPGE=127×10^–9) and lower than that of Co-rich crusts in the Marcus-Wake Seamount (ΣPGE=653×10^–9),similar to that of Co-rich crusts in the South China Sea(ΣPGE=252×10^~–9).The CI chondrite-normalized PGEs patterns in different regions of polymetallic nodules and cobalt-rich crusts are highly consistent,with all being characterized by positive Pt and negative Pd anomalies These results,together with those of previous studies,indicate that PGEs in polymetallic nodules and Co-rich crusts are mainly derived directly from seawater.Pt contents of polymetallic nodules from the study area are negatively correlated with water depth,and Pt/ΣPGE ratios in nodules there are also lower than those of the Corich crusts in the adjacent area,indicating that sedimentary water depth and oxygen fugacity of ambient seawater are the possible important controlling factors for Pt accumulation in crusts and nodules.展开更多
基金The National Natural Science Foundation of China under contract No.40706028
文摘Kr and Xe nuclide abundance and isotopic ratios of the uppermost layer of Fe-Mn Crusts from the western and central Pacific Ocean have been determined. The results indicate that the Kr and Xe isotopic composi-tions, like that of He, Ne and Ar, can be classified into two types: low3He/4He type and high3He/4He type. The low3He/4He type crusts have low84Kr and132Xe abundance, while the high3He/4He type crusts have high84Kr and132Xe abundance. The82Kr/84Kr ratios of the low3He/4He type crusts are lower than that of the air, while the83Kr/84Kr and86Kr/84Kr ratios are higher than those of the air. The Kr isotopic ratios of the high-er3He/4He type crusts are quite similar to those of the air. The128Xe/132Xe,130Xe/132Xe and131Xe/132Xe ratios of the low3He/4He type sample are distinctly lower than those of the air, whereas the129Xe/132Xe,134Xe/132Xe and136Xe/132Xe ratios are higher than those of the air. The low3He/4He type samples have the diagnostic characteristics of the MORB, with excess129, 131, 132, 134, 136Xe relative to130Xe compared with the solar wind. The128Xe/132Xe,130Xe/132Xe and131Xe/132Xe ratios of the high3He/4He type samples are slightly higher than those of the air, and the129Xe/132Xe,134Xe/132Xe and136Xe/132Xe ratios are qiute similar to those of the air. The noble gases in the Fe-Mn crusts are derived from the lower mantle, and they are a mixture of lower mantle primitive component, radiogenic component and subduction recycled component. The helium isotopic ra-tios of the low mantle reservoir are predominantly controlled by primitive He (3He) and U and Th radiogenic decayed He (4He), but the isotopic ratios of the heavier noble gases, such as Ar, Kr and Xe, are controlled to different extent by recycling of subduction components. The difference of the noble isotopic compositions of the two type crusts is the result of the difference of the noble isotopic composition of the mantle source reservoir underneath the seamounts the crusts occurred, the noble gases of the high3He/4He type crusts are derived mainly from EM-type lower mantle reservoir, and the noble gases in the low3He/4He type crusts are derived mainly from HIMU-type lower mantle reservoir.
文摘The current advances in the study of geochemistry and paleo-oceanography of the Co-rich crust are reviewed in this paper. We summarize the study of geochemistry of the Co-rich crust, discuss the diffusion of elements in the Co-rich crust and the exchange with ambient seawater. Besides, we discuss the effect of phosphatization and substrate rocks on the composition of the Co-rich crust. We also introduce the application of stable isotopes(including the stable isotopes of Pb, Nd, and Hf), radioactive isotopes (including the radioactive isotopes of Be, U and Th), and elements (including the major elements, minor elements and rare earth elements) to the study of paleo-oceanography of the Co-rich crust.
基金Project(50474052)supported by the National Natural Science Foundation of ChinaProject(2005) supported by the Youthful Teacher Skeleton Foundation of Hunan Province, ChinaProject supported by the Postdoctoral Foundation of China
文摘For optimizing the cutting depth of spiral drum type cutting head,the relations among collecting ratio,interfusing ratio of mullock and cutting depth of the mining cobalt-rich crusts in ocean were discussed.Furthermore,the multi-extremum problem about cutting depth was analyzed in mining at a certain interfusing ratio of mullock.Through introducing genetic algorithm(GA),the cutting depth-control problem when the collecting ratio is maximized by controlling the interfusing ratio of mullock was solved with global-optimization-search algorithms.Then optimization theory for cutting depth in mining cobalt-rich crusts by GA,and computer programming were given to realize the algorithm.The computation result of actual data proves the validity of this method.
基金supported by grant DY95-08-05 from the China Ocean Mineral Resources R&D Associationthe National Natural Science Foundation of China(Grant 40373002).
文摘A detailed study on a small scale of the effect of phosphatization on the chemistry of marine cobalt-rich ferromanganese crusts supplies useful information for the evaluation and comprehensive utilization of crust mineral resources. Sub-samples from top to bottom of a 10-cm thick sample from the NW Pacific Magellan seamount were taken at 5 mm intervals. The concentration profiles of ore-forming and rare earth elements show that obvious differences exist between young unphosphatized crusts and old phosphatized crusts. In the old crusts Fe, Mn, Si, Al, Zn, Mg, Co, Ni and Cu elements are depleted and Ca, P, Sr, Ba and Pb elements are enriched. The order of depletion is Co > Ni > Mg > Al > Mn > Si> Cu > Zn > Fe, while the order of enrichment is P > Ca > Ba > Pb > Sr. The phosphate mineral controls the concentration variation of the ore-forming elements in crusts and causes loss of the main ore-forming elements such as Co and Ni. The phosphatization also affects the abundance of REEs in the crusts. REEs are more abundant and the content of Ce in old crusts is higher than that in young crusts, however, the pattern of REEs and their fractionation characteristics in new and old crusts are not fundamentally changed. A Y-positive anomaly in old crusts has no relationship to the phosphatization.
基金This work was supported by grant 2004DIB3J086 and 2006FY220400 from the State Ministry of Science and Technology; the National Natural Science Foundation of China (Grant 40676061) ; China Ocean Resource R&D Association (Grant DYXM- 115-01-1-06).
文摘Based on the survey data of five submarine seamount provinces (chains) in the Western Pacific, the distribution characteristics of cobalt-rich ferromanganese crust resources have been researched in this paper by using the relative reference data and applying the theories of hotspot and seafloor spreading. The main research results obtained are as follows: The Co-rich crust thickness in the study area is gradually increasing from east to west and from south to north having a negative correlation (r = -0.59) with longitude and a positive correlation (r = 0.48) with latitude. The crust thickness varying along longitude and latitude is influenced by the hotspot and seafloor spreading. The oceanic crusts and seamounts in the northwest part of the study area are older, and the crust resources are superior to those in the southeast part. In the depth of 〈1500 m, 1500-2000 m, 2000-2500 m in the study area, the cobalt crust thickness is respectively 5.45 cm, 4.34 cm and 3.55 cm, and in the depth of 2500-3000 m and 3000-3500 m, it drops respectively to 2.84 cm and 3.37 cm. The Co-rich crust resources are mainly concentrated in the seamount summit margins and the upper flanks in the depth of 〈2500 m. There is a strong negative correlation (r = -0.67) between the cobalt crust abundance and the slope of the seamount, 75 kg/m^2 and 50 kg/mz at the slopes of 0°-20° and 20°-34° respectively. Cobalt crusts are mainly distributed in the parts whose slopes are less than 20°. It is consistent with the fractal result that the slope threshold of cobalt crust distribution is 19°, and slopes over 20° are not conducive to the crust growth. The cobalt crusts of high grade are mainly enriched in the region within 150°E-140°W and 30°S-30°N in the Pacific, where there are about 587 seamounts at the depth of 3500- 6000 m and over 30 Ma of the oceanic crusts. The perspective area rich in cobalt crust resources is about 41×104 km^2 and the resource quantity is approximately 27 billion tons.
基金the Key Laboratory of Marine Sedimentology and Environmental Geol- ogy, State Oceanic Administration (Grant No. MASEG200602)China Ocean Mineral Resources Research and Development Association (Grant No. DY105-01-04-05)Programme of Excellent Young Scientists of the Ministry of Land and Resources
文摘Co-rich seamount crusts have been shown to possess great potential for providing information on paleoceanographic and paleoclimatic changes. High resolution data are essential to decipher and correctly understand such high-density records. With the development of modern microprobe techniques, detailed sampling of crusts can be performed and it is possible to retrieve detailed information about envi- ronmental changes recorded in the seamount crusts. We report here geochemical results of more than 40 elements (including all rare earth elements) of four Co-rich seamount crust samples, which were collected from seamounts in the central and western Pacific Ocean. These data were obtained with two micro-probe techniques: Electron Probe Micro Analyzer and Laser Ablation Inductively Coupled Plasma Mass Spectrometry. The chronological framework of the seamount crust samples was determined using the cos- mogenic 10Be and the Co-chronometer. Records of elemental composition, P, and Al/(Fe + Mn) and Y/Ho ratios across the sections of the four samples are used to identify paleoceanographic and paleoclimatic events over the past ~30 Ma. These data show that: (1) Al/(Fe + Mn) in the western Pacific seamount crust is a useful proxy for the assessment of changes of source materials related to the variability of the Asian monsoon; (2) P and Y/Ho can be used as proxies to infer biogenic episodes. Finally we discuss the methodology related to dating and micro-probe analysis used in crust study.
基金China Ocean Mineral Resources Research and Development Associa-tion "10th Five Year" Topic (Grant No. DY105-01-04-14)International Science and Technology Cooperation Project from Ministry of Science and Technology of China (Grant No: 2006DFB21620)the National Natural Science Foundation of China (Grant No. 40706029)
文摘Up to now, accurate determination of the growth age and hiatuses of the Co-rich crust is still a difficult work, which constrains the researches on the genesis, growth process, controlling factors, regional tectonics, paleo-oceanographic background, etc. of the Co-rich crust. This paper describes our work in determining the initial growth age of the Co-rich crust to be of the late Cretaceous Campanian Stage (about 75-80 Ma), by selecting the Co-rich crust with clear multi-layer structures in a central Pacific seamount for layer-by-layer sample analysis and using a number of chronological methods, such as Co flux dating, dating by correlation with 187Os/188Os evolution curves of seawater, and stratigraphic divi- sion by calcareous nannofossils. We have also discovered growth hiatuses with different time intervals in the early Paleocene, middle Eocene, late Eocene and early-middle Miocene, respectively. These re- sults have provided an important age background for further researches on the Co-rich crust growth process and the paleo-oceanographic environment evolution thereby revealed in the said region.
基金Supported by China Ocean Mineral Resources R & P Association (Grant No. DY105-01-01-08)National Natural Science Foundation of China (Grant Nos. 40106005, 40476050)
文摘Due to their slow growth rates, seamount Co-rich crusts are very difficult to date with high resolution and precision. This paper is to test the use of orbital pacing on the growth profile of crusts to determine high-resolution age and growth rate. Crust CB14 from the central Pacific Ocean was selected for this study. We first examined the growth pattern in detail under a reflected-light microscope and ascertained that the growth environment was stable for the sub-layer 1 (0-3 mm). We then used electron micro-probe line-scanning to obtain elemental profiles. The pattern of the power spectrum analysis of the Al-profile revealed that there are significant cycles of 113.9, 87.8, 51.5, 42.2 and 25.8 μm. These cycles correspond to the Milankovitch cycles of 53.1, 41, 24, 19.7 and 12 ka, respectively, and yield the growth rate of about 2.14 mm/Ma and an age of about 1.40 Ma for the boundary between the sub-layer 1 and sub-layer 2. We also used a drilling machine with a numerically controlled drive to obtain high-resolution samples at 0.1mm intervals, and used the 230Thex/232Th method to date the samples. For the uppermost 1.3 mm, the growth rate was about 2.15 mm/Ma, and the age for the layer at the depth of 3 mm was about 1.40 Ma, which coincides perfectly with the results obtained from orbital pacing. Thus, it is considered that orbital pacing is a new and effective method to determine the growth rate of the seamount Co-rich crust. This method is applicable for establishing a high-resolution age frame for the crusts of the world's oceans.
文摘I. INTRODUCTIONA lot of work on marine Fe-Mn nodules has been done. However, few reports about the study of Fe-Mn nodules in the Mariana Ridge and the West Philippine Basin are known. The purpose of this note is to report in detail the geochemical characteristics
基金the China Oceanic Mineral Resources R & D Association (COMRA) (Grant No. DY105-01-04-02)the National Natural Science Foundation of China (Grant No. 40376016)
文摘The noble gas nuclide abundances and isotopic ratios of the upmost layer of Fe-Mn crusts from the western and central Pacific Ocean have been determined. The results indicate that the He and Ar nuclide abundances and isotopic ratios can be classified into two types: low 3He/4He type and high 3He/4He type. The low 3He/4He type is characterized by high 4He abundances of 191×10?9 cm3·STP·g?1 on average, with variable 4He, 20Ne and 40Ar abundances in the range (42.8?421)×10?9 cm3·STP·g?1, (5.40?141)×10?9 cm3·STP·g?1, and (773?10976)×10?9 cm3·STP·g?1, respectively. The high 3He/4He samples are characterized by low 4He abundances of 11.7×10?9 cm3·STP·g?1 on average, with 4He, 20Ne and 40Ar abundances in the range of (7.57?17.4)×10?9 cm3·STP·g?1, (10.4?25.5)×10?1 cm3·STP·g?1 and (5354?9050)×10?9 cm3·STP·g?1, respectively. The low 3He/4He samples have 3He/4He ratios (with R/RA ratios of 2.04?2.92) which are lower than those of MORB (R/R A=8±1) and 40Ar/36Ar ratios (447?543) which are higher than those of air (295.5). The high 3He/4He samples have 3He/4He ratios (with R/R A ratios of 10.4?12.0) slightly higher than those of MORB (R/R A=8±1) and 40Ar/36Ar ratios (293?299) very similar to those of air (295.5). The Ne isotopic ratios (20Ne/22Ne and 21Ne/22Ne ratios of 10.3?10.9 and 0.02774?0.03039, respectively) and the 38Ar/36Ar ratios (0.1886?0.1963) have narrow ranges which are very similar to those of air (the 20Ne/22Ne, 21Ne/22Ne, 38Ar/36Ar ratios of 9.80, 0.029 and 0.187, respectively), and cannot be differentiated into different groups. The noble gas nuclide abundances and isotopic ratios, together with their regional variability, suggest that the noble gases in the Fe-Mn crusts originate primarily from the lower mantle. The low 3He/4He type and high 3He/4He type samples have noble gas characteristics similar to those of HIMU (High U/Pb Mantle)-and EM (Enriched Mantle)-type mantle material, respectively. The low 3He/4He type samples with HIMU-type noble gas isotopic ratios occur in the Magellan Seamounts, Marcus-Wake Seamounts, Marshall Island Chain and the Mid-Pacific Seamounts whereas the high 3He/4He type samples with EM-type noble gas isotopic ratios occur in the Line Island Chain. This difference in noble gas characteristics of these crust types implies that the Magellan Seamounts, Marcus-Wake Seamounts, Marshall Island Chain, and the Mid-Pacific Seamounts originated from HIMU-type lower mantle material whereas the Line Island Chain originated from EM-type lower mantle material. This finding is consistent with variations in the Pb-isotope and trace element signatures in the seamount lavas. Differences in the mantle source may therefore be responsible for variations in the noble gas abundances and isotopic ratios in the Fe-Mn crusts. Mantle degassing appears to be the principal factor controlling noble gas isotopic abundances in Fe-Mn crusts. Decay of radioactive isotopes has a negligible influence on the nuclide abundances and isotopic ratios of noble gases in these crusts on the timescale of their formation.
基金the Ministry of Science and Technology and the China Oceanic Min-eral Resource Research and Development Association (COMRA) (Grant Nos. 2006DFB21620 and DY105-01-01-09)
文摘Based on its microstructure, Co-rich crust A1-1 from seamount Allison, central Pacific, was scraped at averaged interval of 1.3 mm to measure osmium isotopic composition, and subsequently to establish the 187Os/188Os profile of scraping section of the crust. By observing the variation of 187Os/188Os under 10Be chronology and matching it to the well-known seawater Os isotope evolution of the past 40 Ma, two growth hiatuses (H1 and H2) occurring in the periods respectively between 13.6 and 29.6 Ma and between 8 and 9.8 Ma in the crust were recognized. According to the two hiatuses, the dating scheme for each scraped layer of the crust was suggested. For the upper layers younger than 6.8Ma, their growth ages were calibrated under 10Be chronology; for the lower layers older than 6.8Ma, their growth ages were obtained from 187Os/188Os evaluation curve by linear interpolation. Hereby, the age for the most inner layer of the crust was determined to be 39.5 Ma. H1 and H2 exactly correspond to the boundary between phosphatization and non-phosphatization and volcanic ash layer in the crust, respectively.
基金China Ocean Mineral Resources R&D Association(COMRA)Project under contract Nos DY135-C1-1-05,DY135-N1-1-06 and DY135-C1-1-02the Scientific Research Fund of the Second Institute of Oceanography,MNR under contract No.JT1304。
文摘Polymetallic nodules and cobalt (Co)-rich crusts are enriched in platinum-group elements (PGEs),especially platinum (Pt) and may be important sinks of PGEs.At present,little information is available on PGEs in polymetallic nodules,and their geochemical characteristics and the causes of PGEs enrichment are unclear.Here PGEs of polymetallic nodules from abyssal basin in the Marcus-Wake Seamount area of the Northwest Pacific Ocean are reported and compared with the published PGEs data of polymetallic nodules and Co-rich crusts in the Pacific.The total PGEs (ΣPGE) content of polymetallic nodules in study area is 258×10^–9) in average,markedly higher than that of Clarion-Clipperton Zone (CCZ) nodules (ΣPGE=127×10^–9) and lower than that of Co-rich crusts in the Marcus-Wake Seamount (ΣPGE=653×10^–9),similar to that of Co-rich crusts in the South China Sea(ΣPGE=252×10^~–9).The CI chondrite-normalized PGEs patterns in different regions of polymetallic nodules and cobalt-rich crusts are highly consistent,with all being characterized by positive Pt and negative Pd anomalies These results,together with those of previous studies,indicate that PGEs in polymetallic nodules and Co-rich crusts are mainly derived directly from seawater.Pt contents of polymetallic nodules from the study area are negatively correlated with water depth,and Pt/ΣPGE ratios in nodules there are also lower than those of the Corich crusts in the adjacent area,indicating that sedimentary water depth and oxygen fugacity of ambient seawater are the possible important controlling factors for Pt accumulation in crusts and nodules.