研究了无穷维H am ilton算子生成C0半群的问题,得到了类无穷维H am ilton算子生成C0半群的一个充分条件.把结果应用在一类双曲型混合问题生成的无穷维H am ilton算子上,证明此类算子生成C0半群,并利用H ille-Y osida定理进一步说明了结...研究了无穷维H am ilton算子生成C0半群的问题,得到了类无穷维H am ilton算子生成C0半群的一个充分条件.把结果应用在一类双曲型混合问题生成的无穷维H am ilton算子上,证明此类算子生成C0半群,并利用H ille-Y osida定理进一步说明了结果的正确性和有效性.另外,还给出了波动方程相应的无穷维H am ilton算子所生成的C0半群的具体表达式.展开更多
借助于算子值数学期望以及概率论方法,得到了Banach空间上指数有界的C半群的概率表示式,进而利用T ay lor展开式、Holder不等式及适当的随机变量的矩生成函数估计式等工具,以较为简化的形式给出了C半群概率型逼近及收敛速度的估计式.最...借助于算子值数学期望以及概率论方法,得到了Banach空间上指数有界的C半群的概率表示式,进而利用T ay lor展开式、Holder不等式及适当的随机变量的矩生成函数估计式等工具,以较为简化的形式给出了C半群概率型逼近及收敛速度的估计式.最后,应用所得到的渐近公式,把C0半群中的一些结果,如K endall及Chung公式,推广到C半群.展开更多
文摘研究了无穷维H am ilton算子生成C0半群的问题,得到了类无穷维H am ilton算子生成C0半群的一个充分条件.把结果应用在一类双曲型混合问题生成的无穷维H am ilton算子上,证明此类算子生成C0半群,并利用H ille-Y osida定理进一步说明了结果的正确性和有效性.另外,还给出了波动方程相应的无穷维H am ilton算子所生成的C0半群的具体表达式.
文摘借助于算子值数学期望以及概率论方法,得到了Banach空间上指数有界的C半群的概率表示式,进而利用T ay lor展开式、Holder不等式及适当的随机变量的矩生成函数估计式等工具,以较为简化的形式给出了C半群概率型逼近及收敛速度的估计式.最后,应用所得到的渐近公式,把C0半群中的一些结果,如K endall及Chung公式,推广到C半群.