The development of an efficient artificial H_(2)O_(2) photosynthesis system is a challenging work using H_(2)O and O_(2) as starting materials.Herein,3D In_(2.77)S_(4) nanoflower precursor was in-situ deposited on K^(...The development of an efficient artificial H_(2)O_(2) photosynthesis system is a challenging work using H_(2)O and O_(2) as starting materials.Herein,3D In_(2.77)S_(4) nanoflower precursor was in-situ deposited on K^(+)-doped g-C_(3)N_(4)(KCN)nanosheets using a solvothermal method,then In_(2.77)S_(4)/KCN(IS/KCN)het-erojunction with an intimate interface was obtained after a calcination process.The investigation shows that the photocatalytic H_(2)O_(2) production rate of 50IS/KCN can reach up to 1.36 mmol g^(-1)h^(-1)without any sacrificial reagents under visible light irradiation,which is 9.2 times and 4.1 times higher than that of KCN and In_(2.77)S_(4)/respectively.The enhanced activity of the above composite can be mainly attributed to the S-scheme charge transfer route between KCN and In_(2.77)S_(4) according to density functional theory calculations,electron paramagnetic resonance and free radical capture tests,leading to an expanded light response range and rapid charge separation at their interface,as well as preserving the active electrons and holes for H_(2)O_(2) production.Besides,the unique 3D nanostructure and surface hydrophobicity of IS/KCN facilitate the diffusion and transportation of O_(2) around the active centers,the energy barriers of O_(2) protonation and H_(2)O_(2) desorption steps are ef-fectively reduced over the composite.In addition,this system also exhibits excellent light harvesting ability and stability.This work provides a potential strategy to explore a sustainable H_(2)O_(2) photo-synthesis pathway through the design of heterojunctions with intimate interfaces and desired reac-tion thermodynamics and kinetics.展开更多
Josephson junction plays a key role not only in studying the basic physics of unconventional iron-based superconductors but also in realizing practical application of thin-film based devices,therefore the preparation ...Josephson junction plays a key role not only in studying the basic physics of unconventional iron-based superconductors but also in realizing practical application of thin-film based devices,therefore the preparation of high-quality iron pnictide Josephson junctions is of great importance.In this work,we have successfully fabricated Josephson junctions from Co-doped BaFe_(2)As_(2)thin films using a direct junction fabrication technique which utilizes high energy focused helium ion beam(FHIB).The electrical transport properties were investigated for junctions fabricated with various He^(+)irradiation doses.The junctions show sharp superconducting transition around 24 K with a narrow transition width of 2.5 K,and a dose correlated foot-structure resistance which corresponds to the effective tuning of junction properties by He^(+)irradiation.Significant J_c suppression by more than two orders of magnitude can be achieved by increasing the He^(+)irradiation dose,which is advantageous for the realization of low noise ion pnictide thin film devices.Clear Shapiro steps are observed under 10 GHz microwave irradiation.The above results demonstrate the successful fabrication of high quality and controllable Co-doped BaFe_(2)As_(2)Josephson junction with high reproducibility using the FHIB technique,laying the foundation for future investigating the mechanism of iron-based superconductors,and also the further implementation in various superconducting electronic devices.展开更多
A novel photo-catalytic system composed of N-doped biochars(NBCs),MnFe_(2)O_(4) and sulfite activation under ultraviolet(NBCs/MnFe_(2)O_(4)/sulfite/UV)was constructed to realize the efficient eliminate of tetracycline...A novel photo-catalytic system composed of N-doped biochars(NBCs),MnFe_(2)O_(4) and sulfite activation under ultraviolet(NBCs/MnFe_(2)O_(4)/sulfite/UV)was constructed to realize the efficient eliminate of tetracycline(TC).As the carrier of MnFe_(2)O_(4),NBCs were synthesized from alfalfa,which has large specific surface area,graphite like structure and hierarchical porous structure.The adsorption isotherm indicated that NBCs/MnFe_(2)O_(4)-2:1 had the best adsorption performance for TC(347.56 mg g^(-1)).Through synergistic adsorption and photocatalysis,the removal rate of TC reached 84%,which was significantly higher than that of MnFe_(2)O_(4).Electrochemical impedance spectroscopy(EIS)and Photoluminescence(PL)characterization results showed that the introduction of NBCs improved the separation efficiency of photogenerated electron and hole pairs and enhanced the photocatalytic performance.Moreover,the adsorption,degradation mechanism and degradation path of TC by the catalyst were systematically analyzed by coupling HPLC–MS measurement with the theoretical calculation.Considering the advantages of excellent degradation performance,low cost,easy separation and environmental friendliness of NBCs/MnFe_(2)O_(4),this work was expected to provide a new path for the practical application of biochar.展开更多
A series of tungstate red phosphors K_(1-x)Li_(x)Eu(WO_(4))_(2-y)(SO_(4))_(y)were successfully prepared by sol-gel method,and the effects of the introduction of Li~+and SO_(4)^(2-)on the fluorescence intensity and the...A series of tungstate red phosphors K_(1-x)Li_(x)Eu(WO_(4))_(2-y)(SO_(4))_(y)were successfully prepared by sol-gel method,and the effects of the introduction of Li~+and SO_(4)^(2-)on the fluorescence intensity and thermal quenching properties of the prepared K_(1-x)Li_(x)Eu(WO_(4))_(2-y)(SO_(4))_(y)phosphors were investigated.The X-ray diffraction data show that the prepared(Li^(+)and SO_(4)^(2-))-doped KEu(WO_(4))_(2)phosphors have a monoclinic tetragonal structure.In addition,the emission intensities of all the observed emission peaks change significantly with the increase of Li~+doping concentration,especially the intensity of the emission peaks at 615 nm fluctuated significantly and reached the maximum at x=0.3 and y=0.2.The K_(1-x)Li_(x)Eu(WO_(4))_(2-y)(SO_(4))_(y)phosphors are found to have the highest fluorescence intensity at x=0.3 and y=0.2.Moreover,the K_(0.7)Li_(0.3)Eu(WO_(4))_(1.8)(SO_(4))_(0.2)phosphor has better thermal quenching properties and luminescence efficiency,and the experimental results indicates that the fluorescence intensity and thermal burst performance of KEu(WO_(4))_(2)red phosphor could be effectively improved by using low-cost bionic doping of Li^(+)and SO_(4)^(2-).展开更多
Exclusive responsiveness to ultraviolet light (~3.2 eV) and high photogenerated charge recombination rate are the two primary drawbacks of pure TiO_(2). We combined N-doped graphene quantum dots (N-GQDs), morphology r...Exclusive responsiveness to ultraviolet light (~3.2 eV) and high photogenerated charge recombination rate are the two primary drawbacks of pure TiO_(2). We combined N-doped graphene quantum dots (N-GQDs), morphology regulation, and heterojunction construction strategies to synthesize N-GQD/N-doped TiO_(2)/P-doped porous hollow g-C_(3)N_(4) nanotube (PCN) composite photocatalysts (denoted as G-TPCN). The optimal sample (G-TPCN doped with 0.1wt% N-GQD, denoted as 0.1% G-TPCN) exhibits significantly enhanced photoabsorption, which is attributed to the change in bandgap caused by elemental doping (P and N), the improved light-harvesting resulting from the tube structure, and the upconversion effect of N-GQDs. In addition, the internal charge separation and transfer capability of0.1% G-TPCN are dramatically boosted, and its carrier concentration is 3.7, 2.3, and 1.9 times that of N-TiO_(2), PCN, and N-TiO_(2)/PCN(TPCN-1), respectively. This phenomenon is attributed to the formation of Z-scheme heterojunction between N-TiO_(2) and PCNs, the excellent electron conduction ability of N-GQDs, and the short transfer distance caused by the porous nanotube structure. Compared with those of N-TiO_(2), PCNs, and TPCN-1, the H2 production activity of 0.1%G-TPCN under visible light is enhanced by 12.4, 2.3, and 1.4times, respectively, and its ciprofloxacin (CIP) degradation rate is increased by 7.9, 5.7, and 2.9 times, respectively. The optimized performance benefits from excellent photoresponsiveness and improved carrier separation and migration efficiencies. Finally, the photocatalytic mechanism of 0.1% G-TPCN and five possible degradation pathways of CIP are proposed. This study clarifies the mechanism of multiple modification strategies to synergistically improve the photocatalytic performance of 0.1% G-TPCN and provides a potential strategy for rationally designing novel photocatalysts for environmental remediation and solar energy conversion.展开更多
With the advantage of fast charge transfer,heterojunction engineering is identified as a viable method to reinforce the anodes'sodium storage performance.Also,vacancies can effectively strengthen the Na+adsorption...With the advantage of fast charge transfer,heterojunction engineering is identified as a viable method to reinforce the anodes'sodium storage performance.Also,vacancies can effectively strengthen the Na+adsorption ability and provide extra active sites for Na+adsorption.However,their synchronous engineering is rarely reported.Herein,a hybrid of Co_(0.85)Se/WSe_(2) heterostructure with Se vacancies and N-doped carbon polyhedron(CoWSe/NCP)has been fabricated for the first time via a hydrothermal and subsequent selenization strategy.Spherical aberration-corrected transmission electron microscopy confirms the phase interface of the Co_(0.85)Se/WSe_(2) heterostructure and the existence of Se vacancies.Density functional theory simulations reveal the accelerated charge transfer and enhanced Na+adsorption ability,which are contributed by the Co_(0.85)Se/WSe_(2) heterostructure and Se vacancies,respectively.As expected,the CoWSe/NCP anode in sodium-ion battery achieves outstanding rate capability(339.6 mAh g^(−1) at 20 A g^(−1)),outperforming almost all Co/W-based selenides.展开更多
Memristors as non-volatile memory devices have gained numerous attentions owing to their advantages in storage,in-memory computing, synaptic applications, etc. In recent years, two-dimensional(2D) materials with moder...Memristors as non-volatile memory devices have gained numerous attentions owing to their advantages in storage,in-memory computing, synaptic applications, etc. In recent years, two-dimensional(2D) materials with moderate defects have been discovered to exist memristive feature. However, it is very difficult to obtain moderate defect degree in 2D materials, and studied on modulation means and mechanism becomes urgent and essential. In this work, we realized memristive feature with a bipolar switching and a configurable on/off ratio in a two-terminal MoS_(2) device(on/off ratio ~100), for the first time, from absent to present using laser-modulation to few-layer defect-free MoS_(2)(about 10 layers), and its retention time in both high resistance state and low resistance state can reach 2×10^(4) s. The mechanism of the laser-induced memristive feature has been cleared by dynamic Monte Carlo simulations and first-principles calculations. Furthermore, we verified the universality of the laser-modulation by investigating other 2D materials of TMDs. Our work will open a route to modulate and optimize the performance of 2D semiconductor memristive devices.展开更多
Carbon-doped copper ferrite(C–CuFe_(2)O_(4))was synthesized by a simple two-step hydrothermal method,which showed enhanced tetracycline hydrochloride(TCH)removal efficiency as compared to the pure CuFe_(2)O_(4) in Fe...Carbon-doped copper ferrite(C–CuFe_(2)O_(4))was synthesized by a simple two-step hydrothermal method,which showed enhanced tetracycline hydrochloride(TCH)removal efficiency as compared to the pure CuFe_(2)O_(4) in Fenton-like reaction.A removal efficiency of 94%was achieved with 0.2 g L^(-1) catalyst and 20 mmol L^(-1) H_(2)O_(2) within 90 min.We demonstrated that 5%C–CuFe_(2)O_(4) catalyst in the presence of H_(2)O_(2) was significantly efficient for TCH degradation under the near-neutral pH(5–9)without buffer.Multiple techniques,including SEM,TEM,XRD,FTIR,Raman,XPS M€ossbauer and so on,were conducted to investigate the structures,morphologies and electronic properties of as-prepared samples.The introduction of carbon can effectively accelerate electron transfer by cooperating with Cu and Fe to activate H_(2)O_(2) to generate·OH and·O_(2)^(-).Particularly,theoretical calculations display that the p,p,d orbital hybridization of C,O,Cu and Fe can form C–O–Cu and C–O–Fe bonds,and the electrons on carbon can transfer to metal Cu and Fe along the C–O–Fe and C–O–Cu channels,thus forming electron-rich reactive centers around Fe and Cu.This work provides lightful reference for the modification of spinel ferrites in Fenton-like application.展开更多
SnO_(2) has been extensively investigated as an anode material for sodium-ion batteries(SIBs)and potassium-ion batteries(PIBs)due to its high Na/K storage capacity,high abundance,and low toxicity.However,the sluggish ...SnO_(2) has been extensively investigated as an anode material for sodium-ion batteries(SIBs)and potassium-ion batteries(PIBs)due to its high Na/K storage capacity,high abundance,and low toxicity.However,the sluggish reaction kinetics,low electronic conductivity,and large volume changes during charge and discharge hinder the practical applications of SnO_(2)-based electrodes for SIBs and PIBs.Engineering rational structures with fast charge/ion transfer and robust stability is important to overcoming these challenges.Herein,S-doped SnO_(2)(S-SnO_(2))quantum dots(QDs)(≈3 nm)encapsulated in an N,S codoped carbon fiber networks(S-SnO_(2)-CFN)are rationally fabricated using a sequential freeze-drying,calcination,and S-doping strategy.Experimental analysis and density functional theory calculations reveal that the integration of S-SnO_(2) QDs with N,S codoped carbon fiber network remarkably decreases the adsorption energies of Na/K atoms in the interlayer of SnO_(2)-CFN,and the S doping can increase the conductivity of SnO_(2),thereby enhancing the ion transfer kinetics.The synergistic interaction between S-SnO_(2) QDs and N,S codoped carbon fiber network results in a composite with fast Na+/K+storage and extraordinary long-term cyclability.Specifically,the S-SnO_(2)-CFN delivers high rate capacities of 141.0 mAh g^(−1) at 20 A g^(−1) in SIBs and 102.8 mAh g^(−1) at 10 A g^(−1) in PIBs.Impressively,it delivers ultra-stable sodium storage up to 10,000 cycles at 5 A g^(−1) and potassium storage up to 5000 cycles at 2 A g^(−1).This study provides insights into constructing metal oxide-based carbon fiber network structures for high-performance electrochemical energy storage and conversion devices.展开更多
To improve the electrocatalytic transformation of carbon dioxide (CO_(2)) to multi-carbon (C_(2+)) products is of great importance.Here we developed a nitrogen-doped Cu catalyst,by which the maximum C_(2+) Faradaic ef...To improve the electrocatalytic transformation of carbon dioxide (CO_(2)) to multi-carbon (C_(2+)) products is of great importance.Here we developed a nitrogen-doped Cu catalyst,by which the maximum C_(2+) Faradaic efficiency can reach 72.7%in flow-cell system,with the partial current density reaching 0.62 A cm^(-2).The in situ Raman spectra demonstrate that the *CO adsorption can be strengthened on such a N-doped Cu catalyst,thus promoting the *CO utilization in the subsequent C–C coupling step.Simultaneously,the water activation can be well enhanced by N doping on Cu catalyst.Owing to the synergistic effects,the selectivity and activity for C_(2+) products over the N-deoped Cu catalyst are much improved.展开更多
Orthorhombic Nb_(2)O_(5)(T-Nb_(2)O_(5))is attractive for fast-charging Li-ion batteries,but it is still hard to realize rapid charge transfer kinetics for Li-ion storage.Herein,F-doped T-Nb_(2)O_(5) microflowers(F-Nb_(...Orthorhombic Nb_(2)O_(5)(T-Nb_(2)O_(5))is attractive for fast-charging Li-ion batteries,but it is still hard to realize rapid charge transfer kinetics for Li-ion storage.Herein,F-doped T-Nb_(2)O_(5) microflowers(F-Nb_(2)O_(5))are rationally synthesized through topotactic conversion.Specifically,F-Nb_(2)O_(5) are assembled by single-crystal nanoflakes with nearly 97%exposed(100)facet,which maximizes the exposure of the feasible Li^(+)transport pathways along loosely packed 4g atomic layers to the electrolytes,thus effectively enhancing the Li^(+)-intercalation performance.Besides,the band gap of F-Nb_(2)O_(5) is reduced to 2.87 eV due to the doping of F atoms,leading to enhanced electrical conductivity.The synergetic effects between tailored exposed crystal facets,F-doping,and ultrathin building blocks,speed up the Li^(+)/electron transfer kinetics and improve the pseudocapacitive properties of F-Nb_(2)O_(5).Therefore,F-Nb_(2)O_(5) exhibit superior rate capability(210.8 and 164.9 mAh g^(-1) at 1 and 10 C,respectively)and good long-term 10 C cycling performance(132.7 mAh g^(-1) after 1500 cycles).展开更多
The unique cellular microstructure of Fe-rich Sm_(2)Co_(17)-type permanent magnets is closely associated with the structure of the solid solution precursor.We investigate the phase structure,magnetic properties,and me...The unique cellular microstructure of Fe-rich Sm_(2)Co_(17)-type permanent magnets is closely associated with the structure of the solid solution precursor.We investigate the phase structure,magnetic properties,and mechanical behavior of B-doped Sm_(2)Co_(17)-type magnets with high Fe content.The doped B atoms can diffuse into the interstitial vacancy,resulting in lattice expansion and promote the homogenization of the phase organizational structure during the solid solution treatment in theory.However,the resulting second phase plays a dominant role to result in more microtwin structures and highly ordered 2:17R phases in the solid solution stage,which inhibits the ordering transformation of 1:7H phase during aging and affects the generation of the cellular structure,and to result in a decrease in magnetic properties,yet the interface formed between it and the matrix phase hinders the movement of dislocations and enhances the mechanical properties.Hence,the precipitation of high flexural strain grain boundary phase induced by B element doping is also a new and effective way to improve the flexural strain of Sm_(2)Co_(17)-type magnets.Our study provides a new understanding of the phase structure evolution and its effect on the magnetic and mechanical properties of Sm_(2)Co_(17)-type magnets with high Fe content.展开更多
Mo_(2)C is an excellent electrocatalyst for hydrogen evolution reaction(HER).However,Mo_(2)C is a poor electrocatalyst for oxygen evolution reaction(OER).Herein,two different elements,namely Co and Fe,are incorporated...Mo_(2)C is an excellent electrocatalyst for hydrogen evolution reaction(HER).However,Mo_(2)C is a poor electrocatalyst for oxygen evolution reaction(OER).Herein,two different elements,namely Co and Fe,are incorporated in Mo_(2)C that,therefore,has a finely tuned electronic structure,which is not achievable by incorporation of any one of the metals.Consequently,the resulting electrocatalyst Co_(0.8)Fe_(0.2)-Mo_(2)C-80 displayed excellent OER catalytic performance,which is evidenced by a low overpotential of 214.0(and 246.5)mV to attain a current density of 10(and 50)mA cm^(-2),an ultralow Tafel slope of 38.4 mV dec^(-1),and longterm stability in alkaline medium.Theoretical data demonstrates that Co_(0.8)Fe_(0.2)-Mo_(2)C-80 requires the lowest overpotential(1.00 V)for OER and Co centers to be the active sites.The ultrahigh catalytic performance of the electrocatalyst is attributed to the excellent intrinsic catalytic activity due to high Brunauer-Emmett-Teller specific surface area,large electrochemically active surface area,small Tafel slope,and low chargetransfer resistance.展开更多
The large volumetric variations experienced by metal selenides within conversion reaction result in inferior rate capability and cycling stability,ultimately hindering the achievement of superior electrochemical perfo...The large volumetric variations experienced by metal selenides within conversion reaction result in inferior rate capability and cycling stability,ultimately hindering the achievement of superior electrochemical performance.Herein,metallic Cu_(2)Se encapsulated with N-doped carbon(Cu_(2)Se@NC)was prepared using Cu_(2)O nanocubes as templates through a combination of dopamine polymerization and hightemperature selenization.The unique nanocubic structure and uniform N-doped carbon coating could shorten the ion transport distance,accelerate electron/charge diffusion,and suppress volume variation,ultimately ensuring Cu_(2)Se@NC with excellent electrochemical performance in sodium ion batteries(SIBs)and potassium ion batteries(PIBs).The composite exhibited excellent rate performance(187.7 mA h g^(-1)at 50 A g^(-1)in SIBs and 179.4 mA h g^(-1)at 5 A g^(-1)in PIBs)and cyclic stability(246,8 mA h g^(-1)at 10 A g^(-1)in SIBs over 2500 cycles).The reaction mechanism of intercalation combined with conversion in both SIBs and PIBs was disclosed by in situ X-ray diffraction(XRD)and ex situ transmission electron microscope(TEM).In particular,the final products in PIBs of K_(2)Se and K_(2)Se_(3)species were determined after discharging,which is different from that in SIBs with the final species of Na_(2)Se.The density functional theory calculation showed that carbon induces strong coupling and charge interactions with Cu_(2)Se,leading to the introduction of built-in electric field on heterojunction to improve electron mobility.Significantly,the theoretical calculations discovered that the underlying cause for the relatively superior rate capability in SIBs to that in PIBs is the agile Na~+diffusion with low energy barrier and moderate adsorption energy.These findings offer theoretical support for in-depth understanding of the performance differences of Cu-based materials in different ion storage systems.展开更多
Ethane chemical looping oxidative dehydrogenation(CL-ODH)to ethylene is a new technology for ethylene preparation.Fe_(2)O_(3)/MgO oxygen carrier was prepared using the co-precipitation method.The influence of added Ni...Ethane chemical looping oxidative dehydrogenation(CL-ODH)to ethylene is a new technology for ethylene preparation.Fe_(2)O_(3)/MgO oxygen carrier was prepared using the co-precipitation method.The influence of added NiO and its different loadings on Fe_(2)O_(3)/MgO were investigated.Then,a series of oxygen carriers were applied in the CL-ODH of the ethane cycle system.Brunauer-Emmett-Teller(BET),X-ray diffractometry(XRD),X-ray photoelection spectroscopy(XPS),and H2-temperature programmed reduction(TPR)were used to characterize the physicochemical properties of these oxygen carriers.It was confirmed that an interaction between NiO and Fe_(2)O_(3) occurred based on the XPS and H2-TPR results.Based on the CL-ODH activity performance tests conducted in a fixed-bed reactor,it was revealed that ethylene selectivity was significantly improved after NiO addition.Fe_(2)O_(3)-10%NiO/MgO showed the best activity performance with 93%ethane conversion and 50%ethylene selectivity at a reaction temperature of 650℃,atmospheric pressure,and space velocity of 7500 mL/(g·h).展开更多
As a prevailing cathode material of lithium-ion batteries(LIBs),LiCoO_(2)(LCO)still encounters the tricky problems of structural collapse,whose morphological engineering and cation doping are crucial for surmounting t...As a prevailing cathode material of lithium-ion batteries(LIBs),LiCoO_(2)(LCO)still encounters the tricky problems of structural collapse,whose morphological engineering and cation doping are crucial for surmounting the mechanical strains and alleviating phase degradation upon cycling.Hereinafter,we propose a strategy using a zeolitic imidazolate framework(ZIF)as the self-sacrificing template to directionally prepare a series of LiNi_(0.1)Co_(0.9)O_(2)(LNCO)with tailorable electrochemical properties.The rational selection of sintering temperature imparts the superiority of the resultant products in lithium storage,during which the sample prepared at 700℃(LNCO-700)outperforms its counterparts in cyclability(156.8 mA h g^(-1)at 1 C for 200 cycles in half cells,1 C=275 mA g^(-1))and rate capability due to the expedited ion/electron transport and the strengthen mechanical robustness.The feasibility of proper Ni doping is also divulged by half/full cell tests and theoretical study,during which LNCO-700(167 mA h g^(-1)at 1 C for 100 cycles in full cells)surpasses LCO-700 in battery performance due to the mitigated phase deterioration,stabilized layered structu re,ameliorated electro nic co nductivity,a nd exalted lithium sto rage activity.This work systematically unveils tailorable electrochemical behaviors of LNCO to better direct their practical application.展开更多
It is urgent to develop catalysts with application potential for oxidative coupling of methane(OCM)at relatively lower temperature.Herein,three-dimensional ordered macro porous(3 DOM)La_(2-x)Sr_(x)Ce_(2-y)CayO_(7-δ)(...It is urgent to develop catalysts with application potential for oxidative coupling of methane(OCM)at relatively lower temperature.Herein,three-dimensional ordered macro porous(3 DOM)La_(2-x)Sr_(x)Ce_(2-y)CayO_(7-δ)(A_(2)B_(2)O_(7)-type)catalysts with disordered defective cubic fluorite phased structure were successfully prepared by a colloidal crystal template method.3DOM structure promotes the accessibility of the gaseous reactants(O2and CH4)to the active sites.The co-doping of Ca and Sr ions in La_(2-x)Sr_(x)Ce_(2-y)CayO_(7-δ)catalysts improved the formation of oxygen vacancies,thereby leading to increased density of surface-active oxygen species(O_(2)^(-))for the activation of CH4and the formation of C2products(C2H6and C2H4).3DOM La_(2-x)Sr_(x)Ce_(2-y)CayO_(7-δ)catalysts exhibit high catalytic activity for OCM at low temperature.3DOM La1.7Sr0.3Ce1.7Ca0.3O7-δcatalyst with the highest density of O_(2)^(-)species exhibited the highest catalytic activity for low-temperature OCM,i.e.,its CH4conversion,selectivity and yield of C2products at 650℃are 32.2%,66.1%and 21.3%,respectively.The mechanism was proposed that the increase in surface oxygen vacancies induced by the co-doping of Ca and Sr ions boosts the key step of C-H bond breaking and C-C bond coupling in catalyzing low-temperature OCM.It is meaningful for the development of the low-temperature and high-efficient catalysts for OCM reaction in practical application.展开更多
The problems of electromagnetic wave(EMW)pollution in X and Ku bands(8–18 GHz)are becoming more and more serious.Therefore,it is urgent to design EMW absorbing materials with high-efficiency such as thin thickness,li...The problems of electromagnetic wave(EMW)pollution in X and Ku bands(8–18 GHz)are becoming more and more serious.Therefore,it is urgent to design EMW absorbing materials with high-efficiency such as thin thickness,lightweight,wide bandwidth and strong EMW absorption.Inspired by the biomorph of sea cucumber,Nb_(2)CT_(x) MXene@Co nitrogen-doped carbon nanosheet arrays@carbon fiber aerogels(Nb_(2)CT_(x)@Co-NC@CFA,Nb_(2)CT_(x)=niobium carbide)were constructed by self-assembly,in-situ chemical deposition and subsequent pyrolysis.The carbon fiber aerogel,as the basic skeleton of sea cucumber,forms lightweight three-dimensional interconnected conductive network,enhances the dielectric loss and extends the multiple reflection and absorption paths of EMW.As the tentacles of sea cucumber surface,Nb_(2)CT_(x) MXene and Co nitrogen-doped carbon nanosheet arrays exist rich heterogeneous interfaces,which play an important role in improving EMW polarization loss and optimizing impedance matching.The minimum reflection loss(RLmin)of Nb_(2)CT_(x)@Co-NC@CFA reaches−54.7 dB at 9.84 GHz(2.36 mm)with a low filling ratio of 10 wt.%and the effective absorption bandwidth(EAB)of Nb_(2)CT_(x)@Co-NC@CFA reaches 2.96 GHz(8.48–11.44 GHz)with 2.36 mm and 5.2 GHz(12.8–18 GHz)with 1.6 mm,covering most of X and Ku bands by adjusting thickness.The radar cross section(RCS)value of Nb_(2)CT_(x)@Co-NC@CFA is 26.64 dB·m^(2),which is lower than that of the perfect electrical conductor(PEC),indicating that Nb_(2)CT_(x)@Co-NC@CFA can effectively decrease the probability of the target being detected by the radar detector.This work provides ideas for design and development of EMW absorbing materials with high-efficiency EMW absorption in X and Ku bands.展开更多
文摘The development of an efficient artificial H_(2)O_(2) photosynthesis system is a challenging work using H_(2)O and O_(2) as starting materials.Herein,3D In_(2.77)S_(4) nanoflower precursor was in-situ deposited on K^(+)-doped g-C_(3)N_(4)(KCN)nanosheets using a solvothermal method,then In_(2.77)S_(4)/KCN(IS/KCN)het-erojunction with an intimate interface was obtained after a calcination process.The investigation shows that the photocatalytic H_(2)O_(2) production rate of 50IS/KCN can reach up to 1.36 mmol g^(-1)h^(-1)without any sacrificial reagents under visible light irradiation,which is 9.2 times and 4.1 times higher than that of KCN and In_(2.77)S_(4)/respectively.The enhanced activity of the above composite can be mainly attributed to the S-scheme charge transfer route between KCN and In_(2.77)S_(4) according to density functional theory calculations,electron paramagnetic resonance and free radical capture tests,leading to an expanded light response range and rapid charge separation at their interface,as well as preserving the active electrons and holes for H_(2)O_(2) production.Besides,the unique 3D nanostructure and surface hydrophobicity of IS/KCN facilitate the diffusion and transportation of O_(2) around the active centers,the energy barriers of O_(2) protonation and H_(2)O_(2) desorption steps are ef-fectively reduced over the composite.In addition,this system also exhibits excellent light harvesting ability and stability.This work provides a potential strategy to explore a sustainable H_(2)O_(2) photo-synthesis pathway through the design of heterojunctions with intimate interfaces and desired reac-tion thermodynamics and kinetics.
基金Project supported by the National Key Research and Development Program of China (Grant Nos.2020YFF01014706 and 2017YFC0601901)the National Natural Science Foundation of China (Grant Nos.61571019 and 52177026)。
文摘Josephson junction plays a key role not only in studying the basic physics of unconventional iron-based superconductors but also in realizing practical application of thin-film based devices,therefore the preparation of high-quality iron pnictide Josephson junctions is of great importance.In this work,we have successfully fabricated Josephson junctions from Co-doped BaFe_(2)As_(2)thin films using a direct junction fabrication technique which utilizes high energy focused helium ion beam(FHIB).The electrical transport properties were investigated for junctions fabricated with various He^(+)irradiation doses.The junctions show sharp superconducting transition around 24 K with a narrow transition width of 2.5 K,and a dose correlated foot-structure resistance which corresponds to the effective tuning of junction properties by He^(+)irradiation.Significant J_c suppression by more than two orders of magnitude can be achieved by increasing the He^(+)irradiation dose,which is advantageous for the realization of low noise ion pnictide thin film devices.Clear Shapiro steps are observed under 10 GHz microwave irradiation.The above results demonstrate the successful fabrication of high quality and controllable Co-doped BaFe_(2)As_(2)Josephson junction with high reproducibility using the FHIB technique,laying the foundation for future investigating the mechanism of iron-based superconductors,and also the further implementation in various superconducting electronic devices.
基金gratefully acknowledge the financial support for this research from the National Natural Science Foundation of China(Grant No.:21978047,21776046)the Six Talent Climax Foundation of Jiangsu(Grant No.:XCL-079).
文摘A novel photo-catalytic system composed of N-doped biochars(NBCs),MnFe_(2)O_(4) and sulfite activation under ultraviolet(NBCs/MnFe_(2)O_(4)/sulfite/UV)was constructed to realize the efficient eliminate of tetracycline(TC).As the carrier of MnFe_(2)O_(4),NBCs were synthesized from alfalfa,which has large specific surface area,graphite like structure and hierarchical porous structure.The adsorption isotherm indicated that NBCs/MnFe_(2)O_(4)-2:1 had the best adsorption performance for TC(347.56 mg g^(-1)).Through synergistic adsorption and photocatalysis,the removal rate of TC reached 84%,which was significantly higher than that of MnFe_(2)O_(4).Electrochemical impedance spectroscopy(EIS)and Photoluminescence(PL)characterization results showed that the introduction of NBCs improved the separation efficiency of photogenerated electron and hole pairs and enhanced the photocatalytic performance.Moreover,the adsorption,degradation mechanism and degradation path of TC by the catalyst were systematically analyzed by coupling HPLC–MS measurement with the theoretical calculation.Considering the advantages of excellent degradation performance,low cost,easy separation and environmental friendliness of NBCs/MnFe_(2)O_(4),this work was expected to provide a new path for the practical application of biochar.
基金Funded by the Science and Technology Bureau of Chengdu City(No.2022-YF05-02119-SN)。
文摘A series of tungstate red phosphors K_(1-x)Li_(x)Eu(WO_(4))_(2-y)(SO_(4))_(y)were successfully prepared by sol-gel method,and the effects of the introduction of Li~+and SO_(4)^(2-)on the fluorescence intensity and thermal quenching properties of the prepared K_(1-x)Li_(x)Eu(WO_(4))_(2-y)(SO_(4))_(y)phosphors were investigated.The X-ray diffraction data show that the prepared(Li^(+)and SO_(4)^(2-))-doped KEu(WO_(4))_(2)phosphors have a monoclinic tetragonal structure.In addition,the emission intensities of all the observed emission peaks change significantly with the increase of Li~+doping concentration,especially the intensity of the emission peaks at 615 nm fluctuated significantly and reached the maximum at x=0.3 and y=0.2.The K_(1-x)Li_(x)Eu(WO_(4))_(2-y)(SO_(4))_(y)phosphors are found to have the highest fluorescence intensity at x=0.3 and y=0.2.Moreover,the K_(0.7)Li_(0.3)Eu(WO_(4))_(1.8)(SO_(4))_(0.2)phosphor has better thermal quenching properties and luminescence efficiency,and the experimental results indicates that the fluorescence intensity and thermal burst performance of KEu(WO_(4))_(2)red phosphor could be effectively improved by using low-cost bionic doping of Li^(+)and SO_(4)^(2-).
基金financially supported by the National Natural Science Foundation of China (Nos.U2002212,52102058,52204414,52204413,and 52204412)the National Key R&D Program of China (Nos.2021YFC1910504,2019YFC1907101,2019YFC1907103,and 2017YFB0702304)+7 种基金the Key R&D Program of Ningxia Hui Autonomous Region,China (Nos.2021BEG01003 and2020BCE01001)the Xijiang Innovation and Entrepreneurship Team,China (No.2017A0109004)the Macao Young Scholars Program (No.AM2022024),Chinathe Beijing Natural Science Foundation (Nos.L212020 and 2214073),Chinathe Guangdong Basic and Applied Basic Research Foundation,China (Nos.2021A1515110998 and 2020A1515110408)the China Postdoctoral Science Foundation (No.2022M710349)the Fundamental Research Funds for the Central Universities,China (Nos.FRF-BD-20-24A,FRF-TP-20-031A1,FRF-IC-19-017Z,and 06500141)the Integration of Green Key Process Systems MIIT and Scientific and Technological Innovation Foundation of Foshan,China(Nos.BK22BE001 and BK21BE002)。
文摘Exclusive responsiveness to ultraviolet light (~3.2 eV) and high photogenerated charge recombination rate are the two primary drawbacks of pure TiO_(2). We combined N-doped graphene quantum dots (N-GQDs), morphology regulation, and heterojunction construction strategies to synthesize N-GQD/N-doped TiO_(2)/P-doped porous hollow g-C_(3)N_(4) nanotube (PCN) composite photocatalysts (denoted as G-TPCN). The optimal sample (G-TPCN doped with 0.1wt% N-GQD, denoted as 0.1% G-TPCN) exhibits significantly enhanced photoabsorption, which is attributed to the change in bandgap caused by elemental doping (P and N), the improved light-harvesting resulting from the tube structure, and the upconversion effect of N-GQDs. In addition, the internal charge separation and transfer capability of0.1% G-TPCN are dramatically boosted, and its carrier concentration is 3.7, 2.3, and 1.9 times that of N-TiO_(2), PCN, and N-TiO_(2)/PCN(TPCN-1), respectively. This phenomenon is attributed to the formation of Z-scheme heterojunction between N-TiO_(2) and PCNs, the excellent electron conduction ability of N-GQDs, and the short transfer distance caused by the porous nanotube structure. Compared with those of N-TiO_(2), PCNs, and TPCN-1, the H2 production activity of 0.1%G-TPCN under visible light is enhanced by 12.4, 2.3, and 1.4times, respectively, and its ciprofloxacin (CIP) degradation rate is increased by 7.9, 5.7, and 2.9 times, respectively. The optimized performance benefits from excellent photoresponsiveness and improved carrier separation and migration efficiencies. Finally, the photocatalytic mechanism of 0.1% G-TPCN and five possible degradation pathways of CIP are proposed. This study clarifies the mechanism of multiple modification strategies to synergistically improve the photocatalytic performance of 0.1% G-TPCN and provides a potential strategy for rationally designing novel photocatalysts for environmental remediation and solar energy conversion.
基金support from the Natural Science Foundation of Jilin Province(Grant No.20200201073JC)the National Natural Science Foundation of China(Grant No.52130101)+1 种基金Interdisciplinary Integration and Innovation Project of JLU(Grant No.JLUXKJC2021ZY01)the Fundamental Research Funds for the Central Universities.
文摘With the advantage of fast charge transfer,heterojunction engineering is identified as a viable method to reinforce the anodes'sodium storage performance.Also,vacancies can effectively strengthen the Na+adsorption ability and provide extra active sites for Na+adsorption.However,their synchronous engineering is rarely reported.Herein,a hybrid of Co_(0.85)Se/WSe_(2) heterostructure with Se vacancies and N-doped carbon polyhedron(CoWSe/NCP)has been fabricated for the first time via a hydrothermal and subsequent selenization strategy.Spherical aberration-corrected transmission electron microscopy confirms the phase interface of the Co_(0.85)Se/WSe_(2) heterostructure and the existence of Se vacancies.Density functional theory simulations reveal the accelerated charge transfer and enhanced Na+adsorption ability,which are contributed by the Co_(0.85)Se/WSe_(2) heterostructure and Se vacancies,respectively.As expected,the CoWSe/NCP anode in sodium-ion battery achieves outstanding rate capability(339.6 mAh g^(−1) at 20 A g^(−1)),outperforming almost all Co/W-based selenides.
基金supported by the National Natural Science Foundation of China(Nos.51971070,10974037,and 62205011)the National Key Research and Development Program of China(No.2016YFA0200403)+6 种基金Eu-FP7 Project(No.247644)CAS Strategy Pilot Program(No.XDA 09020300)Fundamental Research Funds for the Central Universities(No.buctrc202122)the Open Research Project of Zhejiang province Key Laboratory of Quantum Technology and Device(No.20220401)the Open Research Project of Special Display and Imaging Technology Innovation Center of Anhui Province(No.2022AJ05001)funded by the Ph.D Foundation of Hebei University of Water Resources and Electric Engineering(No.SYBJ2202)Funded by Science and Technology Project of Hebei Education Department(No.BJK2022027)。
文摘Memristors as non-volatile memory devices have gained numerous attentions owing to their advantages in storage,in-memory computing, synaptic applications, etc. In recent years, two-dimensional(2D) materials with moderate defects have been discovered to exist memristive feature. However, it is very difficult to obtain moderate defect degree in 2D materials, and studied on modulation means and mechanism becomes urgent and essential. In this work, we realized memristive feature with a bipolar switching and a configurable on/off ratio in a two-terminal MoS_(2) device(on/off ratio ~100), for the first time, from absent to present using laser-modulation to few-layer defect-free MoS_(2)(about 10 layers), and its retention time in both high resistance state and low resistance state can reach 2×10^(4) s. The mechanism of the laser-induced memristive feature has been cleared by dynamic Monte Carlo simulations and first-principles calculations. Furthermore, we verified the universality of the laser-modulation by investigating other 2D materials of TMDs. Our work will open a route to modulate and optimize the performance of 2D semiconductor memristive devices.
基金supported by the Program for the National Natural Science Foundation of China(52070077,51879101,51779090)the National Program for Support of Top-Notch Young Professionals of China(2014)+1 种基金the Program for Changjiang Scholars and Innovative Research Team in University(IRT-13R17)Natural Science Foundation of Hunan Province(2022JJ20013,2021JJ40098).
文摘Carbon-doped copper ferrite(C–CuFe_(2)O_(4))was synthesized by a simple two-step hydrothermal method,which showed enhanced tetracycline hydrochloride(TCH)removal efficiency as compared to the pure CuFe_(2)O_(4) in Fenton-like reaction.A removal efficiency of 94%was achieved with 0.2 g L^(-1) catalyst and 20 mmol L^(-1) H_(2)O_(2) within 90 min.We demonstrated that 5%C–CuFe_(2)O_(4) catalyst in the presence of H_(2)O_(2) was significantly efficient for TCH degradation under the near-neutral pH(5–9)without buffer.Multiple techniques,including SEM,TEM,XRD,FTIR,Raman,XPS M€ossbauer and so on,were conducted to investigate the structures,morphologies and electronic properties of as-prepared samples.The introduction of carbon can effectively accelerate electron transfer by cooperating with Cu and Fe to activate H_(2)O_(2) to generate·OH and·O_(2)^(-).Particularly,theoretical calculations display that the p,p,d orbital hybridization of C,O,Cu and Fe can form C–O–Cu and C–O–Fe bonds,and the electrons on carbon can transfer to metal Cu and Fe along the C–O–Fe and C–O–Cu channels,thus forming electron-rich reactive centers around Fe and Cu.This work provides lightful reference for the modification of spinel ferrites in Fenton-like application.
基金National Natural Science Foundation of China,Grant/Award Number:51971065Innovation Program of Shanghai Municipal Education Commission,Grant/Award Number:2019-01-07-00-07-E00028。
文摘SnO_(2) has been extensively investigated as an anode material for sodium-ion batteries(SIBs)and potassium-ion batteries(PIBs)due to its high Na/K storage capacity,high abundance,and low toxicity.However,the sluggish reaction kinetics,low electronic conductivity,and large volume changes during charge and discharge hinder the practical applications of SnO_(2)-based electrodes for SIBs and PIBs.Engineering rational structures with fast charge/ion transfer and robust stability is important to overcoming these challenges.Herein,S-doped SnO_(2)(S-SnO_(2))quantum dots(QDs)(≈3 nm)encapsulated in an N,S codoped carbon fiber networks(S-SnO_(2)-CFN)are rationally fabricated using a sequential freeze-drying,calcination,and S-doping strategy.Experimental analysis and density functional theory calculations reveal that the integration of S-SnO_(2) QDs with N,S codoped carbon fiber network remarkably decreases the adsorption energies of Na/K atoms in the interlayer of SnO_(2)-CFN,and the S doping can increase the conductivity of SnO_(2),thereby enhancing the ion transfer kinetics.The synergistic interaction between S-SnO_(2) QDs and N,S codoped carbon fiber network results in a composite with fast Na+/K+storage and extraordinary long-term cyclability.Specifically,the S-SnO_(2)-CFN delivers high rate capacities of 141.0 mAh g^(−1) at 20 A g^(−1) in SIBs and 102.8 mAh g^(−1) at 10 A g^(−1) in PIBs.Impressively,it delivers ultra-stable sodium storage up to 10,000 cycles at 5 A g^(−1) and potassium storage up to 5000 cycles at 2 A g^(−1).This study provides insights into constructing metal oxide-based carbon fiber network structures for high-performance electrochemical energy storage and conversion devices.
基金supported by National Natural Science Foundation of China (22033009, 22121002, 22238011)。
文摘To improve the electrocatalytic transformation of carbon dioxide (CO_(2)) to multi-carbon (C_(2+)) products is of great importance.Here we developed a nitrogen-doped Cu catalyst,by which the maximum C_(2+) Faradaic efficiency can reach 72.7%in flow-cell system,with the partial current density reaching 0.62 A cm^(-2).The in situ Raman spectra demonstrate that the *CO adsorption can be strengthened on such a N-doped Cu catalyst,thus promoting the *CO utilization in the subsequent C–C coupling step.Simultaneously,the water activation can be well enhanced by N doping on Cu catalyst.Owing to the synergistic effects,the selectivity and activity for C_(2+) products over the N-deoped Cu catalyst are much improved.
基金supported by the National Natural Science Foundation of China(No.51802163)the Natural Science Foundation of Henan Province of China(No.222300420252)the Natural Science Foundation of Henan Department of Education(No.20A480004).
文摘Orthorhombic Nb_(2)O_(5)(T-Nb_(2)O_(5))is attractive for fast-charging Li-ion batteries,but it is still hard to realize rapid charge transfer kinetics for Li-ion storage.Herein,F-doped T-Nb_(2)O_(5) microflowers(F-Nb_(2)O_(5))are rationally synthesized through topotactic conversion.Specifically,F-Nb_(2)O_(5) are assembled by single-crystal nanoflakes with nearly 97%exposed(100)facet,which maximizes the exposure of the feasible Li^(+)transport pathways along loosely packed 4g atomic layers to the electrolytes,thus effectively enhancing the Li^(+)-intercalation performance.Besides,the band gap of F-Nb_(2)O_(5) is reduced to 2.87 eV due to the doping of F atoms,leading to enhanced electrical conductivity.The synergetic effects between tailored exposed crystal facets,F-doping,and ultrathin building blocks,speed up the Li^(+)/electron transfer kinetics and improve the pseudocapacitive properties of F-Nb_(2)O_(5).Therefore,F-Nb_(2)O_(5) exhibit superior rate capability(210.8 and 164.9 mAh g^(-1) at 1 and 10 C,respectively)and good long-term 10 C cycling performance(132.7 mAh g^(-1) after 1500 cycles).
基金the NationalKey R&D Program of China (Grant Nos. 2021YFB3503102and 2022YFB3505301)Science and Technology Innovation2025 Major Project of Ningbo (Grant No. 2022Z204)+2 种基金ZhejiangProvincial Natural Science Foundation Youth OriginalProject (Grant No. LDQ24E010001)the Key R&D Programof Shanxi Province (Grant No. 202302050201014)Ningbo Natural Science Foundation (Grant No. 2021J216).
文摘The unique cellular microstructure of Fe-rich Sm_(2)Co_(17)-type permanent magnets is closely associated with the structure of the solid solution precursor.We investigate the phase structure,magnetic properties,and mechanical behavior of B-doped Sm_(2)Co_(17)-type magnets with high Fe content.The doped B atoms can diffuse into the interstitial vacancy,resulting in lattice expansion and promote the homogenization of the phase organizational structure during the solid solution treatment in theory.However,the resulting second phase plays a dominant role to result in more microtwin structures and highly ordered 2:17R phases in the solid solution stage,which inhibits the ordering transformation of 1:7H phase during aging and affects the generation of the cellular structure,and to result in a decrease in magnetic properties,yet the interface formed between it and the matrix phase hinders the movement of dislocations and enhances the mechanical properties.Hence,the precipitation of high flexural strain grain boundary phase induced by B element doping is also a new and effective way to improve the flexural strain of Sm_(2)Co_(17)-type magnets.Our study provides a new understanding of the phase structure evolution and its effect on the magnetic and mechanical properties of Sm_(2)Co_(17)-type magnets with high Fe content.
基金financial support from the SERB-SURE under file number of SUR/2022/003129Jong Hyeok Park acknowledges the support of the National Research Foundation of Korea (NRF)funded by the Ministry of Science and ICT (RS-2023-00302697,RS-2023-00268523).
文摘Mo_(2)C is an excellent electrocatalyst for hydrogen evolution reaction(HER).However,Mo_(2)C is a poor electrocatalyst for oxygen evolution reaction(OER).Herein,two different elements,namely Co and Fe,are incorporated in Mo_(2)C that,therefore,has a finely tuned electronic structure,which is not achievable by incorporation of any one of the metals.Consequently,the resulting electrocatalyst Co_(0.8)Fe_(0.2)-Mo_(2)C-80 displayed excellent OER catalytic performance,which is evidenced by a low overpotential of 214.0(and 246.5)mV to attain a current density of 10(and 50)mA cm^(-2),an ultralow Tafel slope of 38.4 mV dec^(-1),and longterm stability in alkaline medium.Theoretical data demonstrates that Co_(0.8)Fe_(0.2)-Mo_(2)C-80 requires the lowest overpotential(1.00 V)for OER and Co centers to be the active sites.The ultrahigh catalytic performance of the electrocatalyst is attributed to the excellent intrinsic catalytic activity due to high Brunauer-Emmett-Teller specific surface area,large electrochemically active surface area,small Tafel slope,and low chargetransfer resistance.
基金The Natural Science Foundation of Henan Province(222300420083)the Opening Foundation of State Key Laboratory of Chemistry and Utilization of Carbon-based Energy Resource of Xinjiang University(KFKT2021004)。
文摘The large volumetric variations experienced by metal selenides within conversion reaction result in inferior rate capability and cycling stability,ultimately hindering the achievement of superior electrochemical performance.Herein,metallic Cu_(2)Se encapsulated with N-doped carbon(Cu_(2)Se@NC)was prepared using Cu_(2)O nanocubes as templates through a combination of dopamine polymerization and hightemperature selenization.The unique nanocubic structure and uniform N-doped carbon coating could shorten the ion transport distance,accelerate electron/charge diffusion,and suppress volume variation,ultimately ensuring Cu_(2)Se@NC with excellent electrochemical performance in sodium ion batteries(SIBs)and potassium ion batteries(PIBs).The composite exhibited excellent rate performance(187.7 mA h g^(-1)at 50 A g^(-1)in SIBs and 179.4 mA h g^(-1)at 5 A g^(-1)in PIBs)and cyclic stability(246,8 mA h g^(-1)at 10 A g^(-1)in SIBs over 2500 cycles).The reaction mechanism of intercalation combined with conversion in both SIBs and PIBs was disclosed by in situ X-ray diffraction(XRD)and ex situ transmission electron microscope(TEM).In particular,the final products in PIBs of K_(2)Se and K_(2)Se_(3)species were determined after discharging,which is different from that in SIBs with the final species of Na_(2)Se.The density functional theory calculation showed that carbon induces strong coupling and charge interactions with Cu_(2)Se,leading to the introduction of built-in electric field on heterojunction to improve electron mobility.Significantly,the theoretical calculations discovered that the underlying cause for the relatively superior rate capability in SIBs to that in PIBs is the agile Na~+diffusion with low energy barrier and moderate adsorption energy.These findings offer theoretical support for in-depth understanding of the performance differences of Cu-based materials in different ion storage systems.
文摘Ethane chemical looping oxidative dehydrogenation(CL-ODH)to ethylene is a new technology for ethylene preparation.Fe_(2)O_(3)/MgO oxygen carrier was prepared using the co-precipitation method.The influence of added NiO and its different loadings on Fe_(2)O_(3)/MgO were investigated.Then,a series of oxygen carriers were applied in the CL-ODH of the ethane cycle system.Brunauer-Emmett-Teller(BET),X-ray diffractometry(XRD),X-ray photoelection spectroscopy(XPS),and H2-temperature programmed reduction(TPR)were used to characterize the physicochemical properties of these oxygen carriers.It was confirmed that an interaction between NiO and Fe_(2)O_(3) occurred based on the XPS and H2-TPR results.Based on the CL-ODH activity performance tests conducted in a fixed-bed reactor,it was revealed that ethylene selectivity was significantly improved after NiO addition.Fe_(2)O_(3)-10%NiO/MgO showed the best activity performance with 93%ethane conversion and 50%ethylene selectivity at a reaction temperature of 650℃,atmospheric pressure,and space velocity of 7500 mL/(g·h).
基金the financial support from the Special Funds for the Cultivation of Guangdong College Students’Scientific and Technological Innovation(“Climbing Program”Special Funds,pdjh2023b0145)Guangdong Provincial International Joint Research Center for Energy Storage Materials(2023A0505090009)。
文摘As a prevailing cathode material of lithium-ion batteries(LIBs),LiCoO_(2)(LCO)still encounters the tricky problems of structural collapse,whose morphological engineering and cation doping are crucial for surmounting the mechanical strains and alleviating phase degradation upon cycling.Hereinafter,we propose a strategy using a zeolitic imidazolate framework(ZIF)as the self-sacrificing template to directionally prepare a series of LiNi_(0.1)Co_(0.9)O_(2)(LNCO)with tailorable electrochemical properties.The rational selection of sintering temperature imparts the superiority of the resultant products in lithium storage,during which the sample prepared at 700℃(LNCO-700)outperforms its counterparts in cyclability(156.8 mA h g^(-1)at 1 C for 200 cycles in half cells,1 C=275 mA g^(-1))and rate capability due to the expedited ion/electron transport and the strengthen mechanical robustness.The feasibility of proper Ni doping is also divulged by half/full cell tests and theoretical study,during which LNCO-700(167 mA h g^(-1)at 1 C for 100 cycles in full cells)surpasses LCO-700 in battery performance due to the mitigated phase deterioration,stabilized layered structu re,ameliorated electro nic co nductivity,a nd exalted lithium sto rage activity.This work systematically unveils tailorable electrochemical behaviors of LNCO to better direct their practical application.
基金supported by the National Key Research and Development Program of China(Nos.2022YFB3504100,2022YFB3506200)the National Natural Science Foundation of China(Nos.22208373,22376217)+1 种基金the Beijing Nova Program(No.20220484215)the Science Foundation of China University of Petroleum,Beijing(No.2462023YJRC030)。
文摘It is urgent to develop catalysts with application potential for oxidative coupling of methane(OCM)at relatively lower temperature.Herein,three-dimensional ordered macro porous(3 DOM)La_(2-x)Sr_(x)Ce_(2-y)CayO_(7-δ)(A_(2)B_(2)O_(7)-type)catalysts with disordered defective cubic fluorite phased structure were successfully prepared by a colloidal crystal template method.3DOM structure promotes the accessibility of the gaseous reactants(O2and CH4)to the active sites.The co-doping of Ca and Sr ions in La_(2-x)Sr_(x)Ce_(2-y)CayO_(7-δ)catalysts improved the formation of oxygen vacancies,thereby leading to increased density of surface-active oxygen species(O_(2)^(-))for the activation of CH4and the formation of C2products(C2H6and C2H4).3DOM La_(2-x)Sr_(x)Ce_(2-y)CayO_(7-δ)catalysts exhibit high catalytic activity for OCM at low temperature.3DOM La1.7Sr0.3Ce1.7Ca0.3O7-δcatalyst with the highest density of O_(2)^(-)species exhibited the highest catalytic activity for low-temperature OCM,i.e.,its CH4conversion,selectivity and yield of C2products at 650℃are 32.2%,66.1%and 21.3%,respectively.The mechanism was proposed that the increase in surface oxygen vacancies induced by the co-doping of Ca and Sr ions boosts the key step of C-H bond breaking and C-C bond coupling in catalyzing low-temperature OCM.It is meaningful for the development of the low-temperature and high-efficient catalysts for OCM reaction in practical application.
基金financially supported by the National Natural Science Foundation of China and the Civil Aviation Administration of China(No.U1833118)the Open Project Program of High-Tech Organic Fibers Key Laboratory of Sichuan Province(No.PLN2022-10)+3 种基金the Science and Technology Plan Project of Chengdu City(2022-YF05-00411-SN)Science and Technology Planning Project of Sichuan Province(Nos.2023YFQ0090,2024YFHZ0218,2023YFN0016,and 2023YFQ083)Yibin Science and Technology Plan Project(No.2022JB013)Engineering characteristic team of Sichuan University(No.2020SCUNG122).
文摘The problems of electromagnetic wave(EMW)pollution in X and Ku bands(8–18 GHz)are becoming more and more serious.Therefore,it is urgent to design EMW absorbing materials with high-efficiency such as thin thickness,lightweight,wide bandwidth and strong EMW absorption.Inspired by the biomorph of sea cucumber,Nb_(2)CT_(x) MXene@Co nitrogen-doped carbon nanosheet arrays@carbon fiber aerogels(Nb_(2)CT_(x)@Co-NC@CFA,Nb_(2)CT_(x)=niobium carbide)were constructed by self-assembly,in-situ chemical deposition and subsequent pyrolysis.The carbon fiber aerogel,as the basic skeleton of sea cucumber,forms lightweight three-dimensional interconnected conductive network,enhances the dielectric loss and extends the multiple reflection and absorption paths of EMW.As the tentacles of sea cucumber surface,Nb_(2)CT_(x) MXene and Co nitrogen-doped carbon nanosheet arrays exist rich heterogeneous interfaces,which play an important role in improving EMW polarization loss and optimizing impedance matching.The minimum reflection loss(RLmin)of Nb_(2)CT_(x)@Co-NC@CFA reaches−54.7 dB at 9.84 GHz(2.36 mm)with a low filling ratio of 10 wt.%and the effective absorption bandwidth(EAB)of Nb_(2)CT_(x)@Co-NC@CFA reaches 2.96 GHz(8.48–11.44 GHz)with 2.36 mm and 5.2 GHz(12.8–18 GHz)with 1.6 mm,covering most of X and Ku bands by adjusting thickness.The radar cross section(RCS)value of Nb_(2)CT_(x)@Co-NC@CFA is 26.64 dB·m^(2),which is lower than that of the perfect electrical conductor(PEC),indicating that Nb_(2)CT_(x)@Co-NC@CFA can effectively decrease the probability of the target being detected by the radar detector.This work provides ideas for design and development of EMW absorbing materials with high-efficiency EMW absorption in X and Ku bands.