期刊文献+
共找到394篇文章
< 1 2 20 >
每页显示 20 50 100
Relationship between the unique microstructures and behaviors of high-entropy alloys 被引量:2
1
作者 Yaqi Wu Peter KLiaw +5 位作者 Ruixuan Li Weiran Zhang Guihong Geng Xuehui Yan Guiqun Liu Yong Zhang 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2024年第6期1350-1363,共14页
High-entropy alloys(HEAs),which were introduced as a pioneering concept in 2004,have captured the keen interest of nu-merous researchers.Entropy,in this context,can be perceived as representing disorder and randomness... High-entropy alloys(HEAs),which were introduced as a pioneering concept in 2004,have captured the keen interest of nu-merous researchers.Entropy,in this context,can be perceived as representing disorder and randomness.By contrast,elemental composi-tions within alloy systems occupy specific structural sites in space,a concept referred to as structure.In accordance with Shannon entropy,structure is analogous to information.Generally,the arrangement of atoms within a material,termed its structure,plays a pivotal role in dictating its properties.In addition to expanding the array of options for alloy composites,HEAs afford ample opportunities for diverse structural designs.The profound influence of distinct structural features on the exceptional behaviors of alloys is underscored by numer-ous examples.These features include remarkably high fracture strength with excellent ductility,antiballistic capability,exceptional radi-ation resistance,and corrosion resistance.In this paper,we delve into various unique material structures and properties while elucidating the intricate relationship between structure and performance. 展开更多
关键词 high-entropy alloys unique microstructure special properties alloy design
下载PDF
Effect of hafnium and molybdenum addition on inclusion characteristics in Co-based dual-phase high-entropy alloys
2
作者 Yong Wang Wei Wang +1 位作者 Joo Hyun Park Wangzhong Mu 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2024年第7期1639-1650,共12页
Specific grades of high-entropy alloys(HEAs)can provide opportunities for optimizing properties toward high-temperature applications.In this work,the Co-based HEA with a chemical composition of Co_(47.5)Cr_(30)Fe_(7.5... Specific grades of high-entropy alloys(HEAs)can provide opportunities for optimizing properties toward high-temperature applications.In this work,the Co-based HEA with a chemical composition of Co_(47.5)Cr_(30)Fe_(7.5)Mn_(7.5)Ni_(7.5)(at%)was chosen.The refractory metallic elements hafnium(Hf)and molybdenum(Mo)were added in small amounts(1.5at%)because of their well-known positive effects on high-temperature properties.Inclusion characteristics were comprehensively explored by using a two-dimensional cross-sectional method and extracted by using a three-dimensional electrolytic extraction method.The results revealed that the addition of Hf can reduce Al_(2)O_(3)inclusions and lead to the formation of more stable Hf-rich inclusions as the main phase.Mo addition cannot influence the inclusion type but could influence the inclusion characteristics by affecting the physical parameters of the HEA melt.The calculated coagulation coefficient and collision rate of Al_(2)O_(3)inclusions were higher than those of HfO_(2)inclusions,but the inclusion amount played a larger role in the agglomeration behavior of HfO_(2)and Al_(2)O_(3)inclusions.The impurity level and active elements in HEAs were the crucial factors affecting inclusion formation. 展开更多
关键词 high-entropy alloy non-metallic inclusion AGGLOMERATION thermodynamics alloyING
下载PDF
Structure and corrosion behavior of FeCoCrNiMo high-entropy alloy coatings prepared by mechanical alloying and plasma spraying
3
作者 Yun Tian Jianing Liu +5 位作者 Mingming Xue Dongyao Zhang Yuxin Wang Keping Geng Yanchun Dong Yong Yang 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2024年第12期2692-2705,共14页
FeCoCrNiMox composite powders were prepared using the mechanical alloying technique and made into high-entropy alloy(HEA)coatings with the face-centered cubic phase using plasma spraying to address the element segrega... FeCoCrNiMox composite powders were prepared using the mechanical alloying technique and made into high-entropy alloy(HEA)coatings with the face-centered cubic phase using plasma spraying to address the element segregation problem in HEAs and pre-pare uniform HEA coatings.Scanning electron microscopy,transmission electron microscopy,and X-ray diffractometry were employed to characterize these coatings’microstructure and phase composition.The hardness,elastic modulus,and fracture toughness of coatings were tested,and the corrosion resistance was analyzed in simulated seawater.Results show that the hardness of the coating is HV0.1606.15,the modulus of elasticity is 128.42 GPa,and the fracture toughness is 43.98 MPa·m^(1/2).The corrosion potential of the coating in 3.5wt%NaCl solution is-0.49 V,and the corrosion current density is 1.2×10^(−6)A/cm^(2).The electrochemical system comprises three parts:the electrolyte,the adsorption and metallic oxide films produced during immersion,and the FeCoNiCrMo HEA coating.Over in-creasingly long periods,the corrosion reaction rate increases first and then decreases,the corrosion product film comprising metal oxides reaches a dynamic balance between formation and dissolution,and the internal reaction of the coating declines. 展开更多
关键词 high-entropy alloy coatings plasma spray mechanical alloying microstructure corrosion behavior mechanical property
下载PDF
Selective Hydrodeoxygenation of Lignin-Derived Vanillin via Hetero-Structured High-Entropy Alloy/Oxide Catalysts
4
作者 Yan Sun Kaili Liang +9 位作者 Ren Tu Xudong Fan Charles Q.Jia Zhiwen Jia Yingnan Li Hui Yang Enchen Jiang Hanwen Liu Yonggang Yao Xiwei Xu 《Energy & Environmental Materials》 SCIE EI CAS CSCD 2024年第3期202-210,共9页
The chemoselective hydrodeoxygenation of natural lignocellulosic materials plays a crucial role in converting biomass into value-added chemicals.Yet their complex molecular structures often require multiple active sit... The chemoselective hydrodeoxygenation of natural lignocellulosic materials plays a crucial role in converting biomass into value-added chemicals.Yet their complex molecular structures often require multiple active sites synergy for effective activation and achieving high chemoselectivity.Herein,it is reported that a high-entropy alloy(HEA)on high-entropy oxide(HEO)hetero-structured catalyst for highly active,chemoselective,and robust vanillin hydrodeoxygenation.The heterogenous HEA/HEO catalysts were prepared by thermal reduction of senary HEOs(NiZnCuFeAlZrO_(x)),where exsolvable metals(e.g.,Ni,Zn,Cu)in situ emerged and formed randomly dispersed HEA nanoparticles anchoring on the HEO matrix.This catalyst exhibits excellent catalytic performance:100%conversion of vanillin and 95%selectivity toward high-value 2-methyl-4 methoxy phenol at low temperature of 120℃,which were attributed to the synergistic effect among HEO matrix(with abundant oxygen vacancies),anchored HEA nanoparticles(having excellent hydrogenolysis capability),and their intimate hetero-interfaces(showing strong electron transferring effect).Therefore,our work reported the successful construction of HEA/HEO heterogeneous catalysts and their superior multifunctionality in biomass conversion,which could shed light on catalyst design for many important reactions that are complex and require multifunctional active sites. 展开更多
关键词 biomass conversion heterogeneous catalysts high-entropy oxide high-entropy alloys lignin pyrolysis
下载PDF
Preparation and Properties of Cu-Containing High-entropy Alloy Nitride Films by Magnetron Sputtering on Titanium Alloy
5
作者 DENG Wanrong YANG Wei +5 位作者 YU Sen LAN Nan MA Xiqun WANG Liqun GAO Wei CHEN Jian 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS CSCD 2024年第6期1586-1594,共9页
Magnetron sputtering deposition with regulated Cu target power was used for depositing Cu-containing high-entropy alloy nitride(Cu-(HEA)N)films on TC4 titanium alloy substrates.The microscopic morphologies,surface com... Magnetron sputtering deposition with regulated Cu target power was used for depositing Cu-containing high-entropy alloy nitride(Cu-(HEA)N)films on TC4 titanium alloy substrates.The microscopic morphologies,surface compositions,and thicknesses of the films were characterized using SEM+EDS;the anti-corrosion,wear resistance and antibacterial properties of the films in simulated seawater were investigated.The experimental results show that all four Cu-(HEA)N films are uniformly dense and contained nanoparticles.The film with Cu doping come into contact with oxygen in the air to form cuprous oxide.The corrosion resistance of the(HEA)N film without Cu doping on titanium alloy is better than the films with Cu doping.The Cu-(HEA)N film with Cu target power of 16 W shows the best wear resistance and antibacterial performance,which is attributed to the fact that Cu can reduce the coefficient of friction and exacerbate corrosion,and the formation of cuprous oxide has antibacterial properties.The findings of this study provide insights for engineering applications of TC4 in the marine field. 展开更多
关键词 titanium alloy high-entropy alloy nitride film magnetron sputtering properties
下载PDF
Accelerated intermetallic phase amorphization in a Mg-based high-entropy alloy powder
6
作者 Prince Sharma Purvam Mehulkumar Gandhi +4 位作者 Kerri-Lee Chintersingh Mirko Schoenitz Edward L.Dreizin Sz-Chian Liou Ganesh Balasubramanian 《Journal of Magnesium and Alloys》 SCIE EI CAS CSCD 2024年第5期1792-1798,共7页
We describe a novel mechanism for the synthesis of a stable high-entropy alloy powder from an otherwise immiscible Mg-Ti rich metallic mixture by employing high-energy mechanical milling.The presented methodology expe... We describe a novel mechanism for the synthesis of a stable high-entropy alloy powder from an otherwise immiscible Mg-Ti rich metallic mixture by employing high-energy mechanical milling.The presented methodology expedites the synthesis of amorphous alloy powder by strategically injecting entropic disorder through the inclusion of multi-principal elements in the alloy composition.Predictions from first principles and materials theory corroborate the results from microscopic characterizations that reveal a transition of the amorphous phase from a precursor intermetallic structure.This transformation,characterized by the emergence of antisite disorder,lattice expansion,and the presence of nanograin boundaries,signifies a departure from the precursor intermetallic structure.Additionally,this phase transformation is accelerated by the presence of multiple principal elements that induce severe lattice distortion and a higher configurational entropy.The atomic size mismatch of the dissimilar elements present in the alloy produces a stable amorphous phase that resists reverting to an ordered lattice even on annealing. 展开更多
关键词 high-entropy alloy High-energy milling Antisite disorder AMORPHOUS INTERMETALLIC
下载PDF
Utlra-fast hydrolysis performance of MgH_(2) catalyzed by Ti-Zr-Fe-Mn-Cr-V high-entropy alloys
7
作者 Jinting Chen Tingting Xu +7 位作者 Zeyu Zhang Jinghan Zhang Haixiang Huang Bogu Liu Yawei Li Jianguang Yuan Bao Zhang Ying Wu 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第11期77-86,共10页
Hydrogen energy is one of the ideal energy alternatives and the upstream of the hydrogen industry chain is hydrogen production,which can be achieved via the reaction of inorganic materials with water,known as hydrolys... Hydrogen energy is one of the ideal energy alternatives and the upstream of the hydrogen industry chain is hydrogen production,which can be achieved via the reaction of inorganic materials with water,known as hydrolysis.Among inorganic materials,the high hydrogen capacity for hydrolysis of MgH_(2)(15.2 wt%)makes it a promising material for hydrogen production via hydrolysis.However,the dense Mg(OH)_(2) passivation layer will block the reaction between MgH_(2) and the solution,resulting in low hydrogen yield and sluggish hydrolysis kinetics.In this work,the hydrogenyield and hydrogen generation rate of MgH_(2) are considerably enhanced by adding Ti-Zr-Fe-Mn-Cr-V high-entropy alloys(HEAs) for the first time.In particular.the MgH_(2)-3 wt% TiZrFe_(1.5)MnCrV_(0.5)(labelled as MgH_(2)-3 wt% Fe_(1.5)) composite releases 1526.70 mL/g H_(2) within 5 min at 40℃,and the final hydrolysis conversion rate reaches 95.62% within 10 min.The mean hydrogen generation rate of the MgH_(2)-3 wt% Fe_(1.5) composite is 289.16 mL/g/min,which is 2.38 times faster than that of pure MgH_(2).Meanwhile,the activation energy of the MgH_(2)-3 wt% Fe_(1.5) composite is calculated to be 12.53 kJ/mol. The density functional theory(DFT) calculation reveals that the addition of HEAs weakens the Mg-H bonds and accelerates the electron transfer between MgH_(2) and HEAs,Combined with the cocktail effect of HEAs as well as the formation of more interfaces and micro protocells,the hydrolysis performance of MgH_(2) is considerably improved.This work provides an appealing prospect for real-time hydrogen supply and offers a new effective strategy for improving the hydrolysis performance of MgH_(2). 展开更多
关键词 Mg-based materials high-entropy alloys HYDROLYSIS Hydrogen generation Cocktail effect CATALYSIS
下载PDF
Comprehensive insights into recent innovations:Magnesium-inclusive high-entropy alloys
8
作者 Andrii Babenko Ehsan Ghasali +6 位作者 Saleem Raza Kahila Baghchesaraee Ye Cheng Asif Hayat Peng Liu Shuaifei Zhao Yasin Orooji 《Journal of Magnesium and Alloys》 SCIE EI CAS CSCD 2024年第4期1311-1345,共35页
This review focuses on thermodynamic and physical parameters,synthesis methods,and reported phases of Magnesium(Mg)containing high-entropy alloys(HEAs).Statistical data of publications concerning Mg-containing HEAs we... This review focuses on thermodynamic and physical parameters,synthesis methods,and reported phases of Magnesium(Mg)containing high-entropy alloys(HEAs).Statistical data of publications concerning Mg-containing HEAs were collected and analyzed.Data on the chemical elements included in Mg-containing HEAs,their theoretical end experimental densities,thermodynamic parameters,physical parameters,fabricated techniques and reported phases were also collected and discussed.On the basis of this information,a new classification for HEAs was proposed.It is also shown that the existing thermodynamic parameters cannot accurately predict the formation of a single phase solid solution for Mg-containing HEAs.The physical parameters of Mg-containing HEAs are within a wide range,and most of the synthesized Mg-containing HEAs have a complex multiphase structure. 展开更多
关键词 MAGNESIUM high-entropy alloys CLASSIFICATION Thermodynamic parameters Physical parameters
下载PDF
Evolution of helium bubbles in FeCoNiCr-based high-entropy alloys containing γ′ nanoprecipitates
9
作者 冯婷 蒋胜明 +4 位作者 胡潇天 张子骏 黄子敬 董士刚 张建 《Chinese Physics B》 SCIE EI CAS CSCD 2024年第7期491-500,共10页
A series of high-entropy alloys(HEAs) containing nanoprecipitates of varying sizes is successfully prepared by a non-consuming vacuum arc melting method.In order to study the irradiation evolution of helium bubbles in... A series of high-entropy alloys(HEAs) containing nanoprecipitates of varying sizes is successfully prepared by a non-consuming vacuum arc melting method.In order to study the irradiation evolution of helium bubbles in the FeCoNiCrbased HE As with γ' precipitates,these samples are irradiated by 100-keV helium ions with a fluence of 5 × 10^(20) ions/m^(2) at 293 K and 673 K,respectively.And the samples irradiated at room temperature are annealed at different temperatures to examine the diffusion behavior of helium bubbles.Transmission electron microscope(TEM) is employed to characterize the structural morphology of precipitated nanoparticles and the evolution of helium bubbles.Experimental results reveal that nanosized,spherical,dispersed,coherent,and ordered L1_(2)-type Ni_(3)Ti γ' precipitations are introduced into FeCoNiCr(Ni_(3)Ti)_(0.1) HEAs by means of ageing treatments at temperatures between 1073 K and 1123 K.Under the ageing treatment conditions adopted in this work,γ' nanoparticles are precipitated in FeCoNiCr(Ni_(3)Ti)_(0.1) HE As,with average diameters of 15.80 nm,37.09 nm,and 62.50 nm,respectively.The average sizes of helium bubbles observed in samples after 673-K irradiation are 1.46 nm,1.65 nm,and 1.58 nm,respectively.The improvement in the irradiation resistance of FeCoNiCr(Ni_(3)Ti)_(0.1) HEAs is evidenced by the diminution in bubbles size.Furthermore,the FeCoNiCr(Ni_(3)Ti)_(0.1) HEAs containing γ' precipitates of 15.8 nm exhibits the minimum size and density of helium bubbles,which can be ascribed to the considerable helium trapping effects of heterogeneous coherent phase boundaries.Subsequently,annealing experiments conducted after 293-K irradiation indicate that HEAs containing precipitated phases exhibits smaller apparent activation energy(E_(a)) for helium bubbles,resulting in larger helium bubble size.This study provides guidance for improving the irradiation resistance of L1_(2)-strengthened high-entropy alloy. 展开更多
关键词 high-entropy alloys irradiation resistance coherent precipitates helium bubbles
下载PDF
Effect of Mn content on microstructure and properties of AlCrCuFeMnx high-entropy alloy
10
作者 Ning Wang Kai Ma +3 位作者 Qiu-da Li Yu-dong Yuan Yan-chun Zhao Li Feng 《China Foundry》 SCIE EI CAS CSCD 2024年第2期147-158,共12页
AlCrCuFeMnx(x=0,0.5,1,1.5,and 2)high-entropy alloys were prepared using the vacuum arc melting technology.The microstructure and mechanical properties of AlCrCuFeMnxwere analyzed and tested by XRD,SEM,TEM,nanoindentat... AlCrCuFeMnx(x=0,0.5,1,1.5,and 2)high-entropy alloys were prepared using the vacuum arc melting technology.The microstructure and mechanical properties of AlCrCuFeMnxwere analyzed and tested by XRD,SEM,TEM,nanoindentation,and electronic universal testing.The results indicate that the AlCrCuFeMnxhigh-entropy alloy exhibits a dendritic structure,consisting of dendrites with a BCC structure,interdendrite regions with an FCC structure,and precipitates with an ordered BCC structure that form within the dendrite.Manganese(Mn)has a strong affinity for dendritic,interdendritic,and precipitate structures,allowing it to easily enter these areas.With an increase in Mn content,the size of the precipitated nanoparticles in the dendritic region initially increases and then decreases.Similarly,the area fraction initially decreases and then increases.Additionally,the alloy’s strength and wear resistance decrease,while its plasticity increases.The Al Cr Cu Fe Mn1.5alloy boasts excellent mechanical properties,including a hardness of 360 HV and a wear rate of 2.4×10^(-5)mm^(3)·N^(-1)·mm^(-1).It also exhibits impressive yield strength,compressive strength,and deformation rates of 960 MPa,1,700 MPa,and 27.5%,respectively. 展开更多
关键词 high-entropy alloys MICROSTRUCTURE mechanical properties wear resistance strengthening mechanisms
下载PDF
Atomistic evaluation of tension–compression asymmetry in nanoscale body-centered-cubic AlCrFeCoNi high-entropy alloy
11
作者 邢润龙 刘雪鹏 《Chinese Physics B》 SCIE EI CAS CSCD 2024年第1期613-622,共10页
The tension and compression of face-centered-cubic high-entropy alloy(HEA) nanowires are significantly asymmetric, but the tension–compression asymmetry in nanoscale body-centered-cubic(BCC) HEAs is still unclear. In... The tension and compression of face-centered-cubic high-entropy alloy(HEA) nanowires are significantly asymmetric, but the tension–compression asymmetry in nanoscale body-centered-cubic(BCC) HEAs is still unclear. In this study,the tension–compression asymmetry of the BCC Al Cr Fe Co Ni HEA nanowire is investigated using molecular dynamics simulations. The results show a significant asymmetry in both the yield and flow stresses, with BCC HEA nanowire stronger under compression than under tension. The strength asymmetry originates from the completely different deformation mechanisms in tension and compression. In compression, atomic amorphization dominates plastic deformation and contributes to the strengthening, while in tension, deformation twinning prevails and weakens the HEA nanowire.The tension–compression asymmetry exhibits a clear trend of increasing with the increasing nanowire cross-sectional edge length and decreasing temperature. In particular, the compressive strengths along the [001] and [111] crystallographic orientations are stronger than the tensile counterparts, while the [110] crystallographic orientation shows the exactly opposite trend. The dependences of tension–compression asymmetry on the cross-sectional edge length, crystallographic orientation,and temperature are explained in terms of the deformation behavior of HEA nanowire as well as its variations caused by the change in these influential factors. These findings may deepen our understanding of the tension–compression asymmetry of the BCC HEA nanowires. 展开更多
关键词 high-entropy alloys body-centered-cubic NANOWIRE tension–compression asymmetry atomistic simulations
下载PDF
High-entropy alloys in thermoelectric application:A selective review
12
作者 任凯 霍文燚 +3 位作者 陈帅 程渊 王彪 张刚 《Chinese Physics B》 SCIE EI CAS CSCD 2024年第5期1-11,共11页
Since the superior mechanical,chemical and physical properties of high-entropy alloys(HEAs)were discovered,they have gradually become new emerging candidates for renewable energy applications.This review presents the ... Since the superior mechanical,chemical and physical properties of high-entropy alloys(HEAs)were discovered,they have gradually become new emerging candidates for renewable energy applications.This review presents the novel applications of HEAs in thermoelectric energy conversion.Firstly,the basic concepts and structural properties of HEAs are introduced.Then,we discuss a number of promising thermoelectric materials based on HEAs.Finally,the conclusion and outlook are presented.This article presents an advanced understanding of the thermoelectric properties of HEAs,which provides new opportunities for promoting their applications in renewable energy. 展开更多
关键词 high-entropy alloys thermoelectric materials thermal conduction
下载PDF
Adhesion property of AlCrNbSiTi high-entropy alloy coating on zirconium:experimental and theoretical studies
13
作者 Bao‑Liang Zhang Wen‑Guan Liu +5 位作者 Meng‑He Tu Can Fang Yan Liu Yu‑Hui Wang Yong Hu Hui Wang 《Nuclear Science and Techniques》 SCIE EI CAS CSCD 2024年第8期79-91,共13页
Experimental scratch tests and first-principles calculations were used to investigate the adhesion property of AlCrNbSiTi high-entropy alloy(HEA)coatings on zirconium substrates.AlCrNbSiTi HEA and Cr coatings were dep... Experimental scratch tests and first-principles calculations were used to investigate the adhesion property of AlCrNbSiTi high-entropy alloy(HEA)coatings on zirconium substrates.AlCrNbSiTi HEA and Cr coatings were deposited on Zr alloy substrates using multi-arc ion plating technology,and scratch tests were subsequently conducted to estimate the adhesion property of the coatings.The results indicated that Cr coatings had better adhesion strength than HEA coatings,and the HEA coatings showed brittleness.The special quasi-random structure approach was used to build HEA models,and Cr/Zr and HEA/Zr interface models were employed to investigate the cohesion between the coatings and Zr substrate using first-principles calculations.The calculated interface energies showed that the cohesion between the Cr coating and the Zr substrate was stronger than that of the HEA coating with Zr.In contrary to Al or Si in the HEA coating,Cr,Nb,and Ti atoms binded strongly with Zr substrate.Based on the calculated elastic constants,it was found that low Cr and high Al content decreased the mechanical performances of HEA coatings.Finally,this study demonstrated the utilization of a combined approach involving first-principles calculations and experimental studies for future HEA coating development. 展开更多
关键词 high-entropy alloy coating Cr coating Adhesion property Scratch test First-principles calculation
下载PDF
Study on the hydrogen absorption properties of a YGdTbDyHo rare-earth high-entropy alloy
14
作者 Tongyue Li Ziliang Xie +5 位作者 Wenjiao Zhou Huan Tong Dawen Yang Anjia Zhang Yuan Wu Xiping Song 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS 2025年第1期127-135,共9页
This study investigated the microstructure and hydrogen absorption properties of a rare-earth high-entropy alloy(HEA),YGdTbDyHo.Results indicated that the YGdTbDyHo alloy had a microstructure of equiaxed grains,with t... This study investigated the microstructure and hydrogen absorption properties of a rare-earth high-entropy alloy(HEA),YGdTbDyHo.Results indicated that the YGdTbDyHo alloy had a microstructure of equiaxed grains,with the alloy elements distributed homogeneously.Upon hydrogen absorption,the phase structure of the HEA changed from a solid solution with an hexagonal-close-packed(HCP)structure to a high-entropy hydride with an faced-centered-cubic(FCC)structure without any secondary phase precipitated.The alloy demonstrated a maximum hydrogen storage capacity of 2.33 H/M(hydrogen atom/metal atom)at 723 K,with an enthalpy change(ΔH)of-141.09 kJ·mol^(-1)and an entropy change(ΔS)of-119.14 J·mol^(-1)·K^(-1).The kinetic mechanism of hydrogen absorption was hydride nucleation and growth,with an apparent activation energy(E_(a))of 20.90 kJ·mol^(-1).Without any activation,the YGdTbDyHo alloy could absorb hydrogen quickly(180 s at 923 K)with nearly no incubation period observed.The reason for the obtained value of 2.33 H/M was that the hydrogen atoms occupied both tetrahedral and octahedral interstices.These results demonstrate the potential application of HEAs as a high-capacity hydrogen storage material with a large H/M ratio,which can be used in the deuterium storage field. 展开更多
关键词 RARE-EARTH high-entropy alloy hydrogen absorption capacity pressure–composition–temperature curves KINETICS
下载PDF
High-Entropy Alloys to Activate the Sulfur Cathode for Lithium-Sulfur Batteries 被引量:3
15
作者 Zhenyu Wang Hailun Ge +2 位作者 Sheng Liu Guoran Li Xueping Gao 《Energy & Environmental Materials》 SCIE EI CAS CSCD 2023年第3期40-49,共10页
Sulfur element possesses an ultrahigh theoretical specific capacity,while the utilization of sulfur in the whole cathode is lower obviously owing to the sluggish kinetics of sulfur and discharged products,limiting the... Sulfur element possesses an ultrahigh theoretical specific capacity,while the utilization of sulfur in the whole cathode is lower obviously owing to the sluggish kinetics of sulfur and discharged products,limiting the enhancement on energy density of lithium-sulfur batteries.Herein,for the first time,Fe_(0.24)Co_(0.26)Ni_(0.10)Cu_(0.15)Mn_(0.25)high-entropy alloy is introduced as the core catalytic host to activate the electrochemical performance of the sulfur cathode for lithium-sulfur batteries.It is manifested that Fe_(0.24)Co_(0.26)Ni_(0.10)Cu_(0.15)Mn_(0.25)high-entropy alloy nanocrystallites distributed on nitrogen-doped carbon exhibit high electrocatalytic activity toward the conversion of solid sulfur to solid discharged products across soluble intermediate lithium polysulfides.In particular,benefiting from the accelerated kinetics by high-entropy alloy nanocrystallites and synergistic adsorption by nitrogen-doped carbon,the cathode exhibits high reversible capacity of 1079.5 mAh g_(-cathode)^(-1)(high utilization of 89.4%)with the whole cathode as active material,instead of sulfur element.Moreover,under both lean electrolyte(3μmg^(-1))and ultrahigh sulfur loading(27.0 mg cm^(-2))condition,the high discharge capacity of 868.2 mAh g_(-cathode)^(-1)can be still achieved for the sulfur cathode.This strategy opens up a new path to explore catalytic host materials for enhancing the utilization of sulfur in the whole cathode for lithium-sulfur batteries. 展开更多
关键词 catalytic host electrochemical performance high-entropy alloy lithium–sulfur batteries sulfur cathode
下载PDF
A Nitride-Reinforced NbMoTaWHfN Refractory High-Entropy Alloy with Potential Ultra-High-Temperature Engineering Applications 被引量:1
16
作者 Yixing Wan Yanhai Cheng +5 位作者 Yongxiong Chen Zhibin Zhang Yanan Liu Haijun Gong Baolong Shen Xiubing Liang 《Engineering》 SCIE EI CAS CSCD 2023年第11期110-120,共11页
Refractory high-entropy alloys(RHEAs)have promising applications as the new generation of hightemperature alloys in hypersonic vehicles,aero-engines,gas turbines,and nuclear power plants.This study focuses on the micr... Refractory high-entropy alloys(RHEAs)have promising applications as the new generation of hightemperature alloys in hypersonic vehicles,aero-engines,gas turbines,and nuclear power plants.This study focuses on the microstructures and mechanical properties of the NbMoTaW(HfN)_(x)(x=0,0.3,0.7,and 1.0)RHEAs.The alloys consist of multiple phases of body-centered cubic(BCC),hafnium nitride(HfN),or multicomponent nitride(MN)phases.As the x contents increase,the grain size becomes smaller,and the strength gradually increases.The compressive yield strengths of the NbMoTaWHfN RHEA at ambient temperature,1000,1400,and 1800℃ were found to be 1682,1192,792,and 288 MPa,respectively.The high-temperature strength of this alloy is an inspiring result that exceeds the high temperature and strength of most known alloys,including high-entropy alloys,refractory metals,and superalloys.The HfN phase has a significant effect on strengthening due to its high structural stability and sluggish grain coarsening,even at ultra-high temperatures.Its superior properties endow the NbMoTaWHfN RHEA with potential for a wide range of engineering applications at ultra-high temperatures.This work offers a strategy for the design of high-temperature alloys and proposes an ultra-high-temperature alloy with potential for future engineering applications. 展开更多
关键词 Refractory high-entropy alloy High temperature Mechanical property MICROSTRUCTURE Strengthening mechanism
下载PDF
Microstructures and micromechanical behaviors of high -entropy alloys investigated by synchrotron X-ray and neutron diffraction techniques: A review 被引量:1
17
作者 Yubo Huang Ning Xu +3 位作者 Huaile Lu Yang Ren Shilei Li Yandong Wang 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2024年第6期1333-1349,共17页
High-entropy alloys(HEAs)possess outstanding features such as corrosion resistance,irradiation resistance,and good mechan-ical properties.A few HEAs have found applications in the fields of aerospace and defense.Exten... High-entropy alloys(HEAs)possess outstanding features such as corrosion resistance,irradiation resistance,and good mechan-ical properties.A few HEAs have found applications in the fields of aerospace and defense.Extensive studies on the deformation mech-anisms of HEAs can guide microstructure control and toughness design,which is vital for understanding and studying state-of-the-art structural materials.Synchrotron X-ray and neutron diffraction are necessary techniques for materials science research,especially for in situ coupling of physical/chemical fields and for resolving macro/microcrystallographic information on materials.Recently,several re-searchers have applied synchrotron X-ray and neutron diffraction methods to study the deformation mechanisms,phase transformations,stress behaviors,and in situ processes of HEAs,such as variable-temperature,high-pressure,and hydrogenation processes.In this review,the principles and development of synchrotron X-ray and neutron diffraction are presented,and their applications in the deformation mechanisms of HEAs are discussed.The factors that influence the deformation mechanisms of HEAs are also outlined.This review fo-cuses on the microstructures and micromechanical behaviors during tension/compression or creep/fatigue deformation and the application of synchrotron X-ray and neutron diffraction methods to the characterization of dislocations,stacking faults,twins,phases,and intergrain/interphase stress changes.Perspectives on future developments of synchrotron X-ray and neutron diffraction and on research directions on the deformation mechanisms of novel metals are discussed. 展开更多
关键词 high-entropy alloys MICROSTRUCTURES micromechanical behaviors synchrotron X-ray diffraction neutron diffraction
下载PDF
Uncertainty quantification of predicting stable structures for high-entropy alloys using Bayesian neural networks
18
作者 Yonghui Zhou Bo Yang 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2023年第6期118-124,I0005,共8页
High entropy alloys(HEAs)have excellent application prospects in catalysis because of their rich components and configuration space.In this work,we develop a Bayesian neural network(BNN)based on energies calculated wi... High entropy alloys(HEAs)have excellent application prospects in catalysis because of their rich components and configuration space.In this work,we develop a Bayesian neural network(BNN)based on energies calculated with density functional theory to search the configuration space of the CoNiRhRu HEA system.The BNN model was developed by considering six independent features of Co-Ni,Co-Rh,CoRu,Ni-Rh,Ni-Ru,and Rh-Ru in different shells and energies of structures as the labels.The root mean squared error of the energy predicted by BNN is 1.37 me V/atom.Moreover,the influence of feature periodicity on the energy of HEA in theoretical calculations is discussed.We found that when the neural network is optimized to a certain extent,only using the accuracy indicator of root mean square error to evaluate model performance is no longer accurate in some scenarios.More importantly,we reveal the importance of uncertainty quantification for neural networks to predict new structures of HEAs with proper confidence based on BNN. 展开更多
关键词 Uncertainty quantification high-entropy alloys Bayesian neural networks Energy prediction Structure screening
下载PDF
On the Superconductivity in High-Entropy Alloy (NbTa)1-X(HfZrTi)X
19
作者 Snehadri B. Ota 《Journal of Modern Physics》 CAS 2023年第4期445-449,共5页
The superconductivity in (NbTa)<sub>1-X</sub>(HfZrTi)<sub>X</sub> high-entropy alloy is analyzed using the theory of strong-coupled superconductor. It is concluded that (NbTa)<sub>1-X<... The superconductivity in (NbTa)<sub>1-X</sub>(HfZrTi)<sub>X</sub> high-entropy alloy is analyzed using the theory of strong-coupled superconductor. It is concluded that (NbTa)<sub>1-X</sub>(HfZrTi)<sub>X </sub>is a strong coupled superconductor. The variation in the superconducting transition temperature from 7.9 K to 4.6 K as x increases from 0.2 to 0.84 arises because of the decrease in electronic band width due to localization and broadening of the band. It is suggested that the decrease in electronic band width is due to crystalline randomness which gives rise to the mobility edge. 展开更多
关键词 high-entropy alloys Disordered Metals Strong-Coupled Superconductivity LOCALIZATION Cocktail Effect
下载PDF
Enhancing the mechanical properties of casting eutectic high -entropy alloys via W addition
20
作者 Xu Yang Dezhi Chen +3 位作者 Li Feng Gang Qin Shiping Wu Ruirun Chen 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2024年第6期1364-1372,共9页
The effect of W element on the microstructure evolution and mechanical properties of Al_(1.25)CoCrFeNi3 eutectic high-entropy alloy and Al_(1.25)CoCrFeNi_(3-x)W_(x)(x=0,0.05,0.1,0.3,and 0.5;atomic ratio)high-entropy a... The effect of W element on the microstructure evolution and mechanical properties of Al_(1.25)CoCrFeNi3 eutectic high-entropy alloy and Al_(1.25)CoCrFeNi_(3-x)W_(x)(x=0,0.05,0.1,0.3,and 0.5;atomic ratio)high-entropy alloys(HEAs)were explored.Results show that the Al_(1.25)CoCrFeNi_(3-x)W_(x) HEAs are composed of face-centered cubic and body-centered cubic(BCC)phases.As W content increases,the microstructure changes from eutectic to dendritic.The addition of W lowers the nucleation barrier of the BCC phase,decreases the valence electron concentration of the HEAs,and replaces Al in the BCC phase,thus facilitating the nucleation of the BCC phase.Tensile results show that the addition of W greatly improves the mechanical properties,and solid-solution,heterogeneous-interface,and second-phase strengthening are the main strengthening mechanisms.The yield strength,tensile strength,and elongation of the Al_(1.25)CoCrFeNi2.95W0.05 HEA are 601.44 MPa,1132.26 MPa,and 15.94%,respectively,realizing a balance between strength and plasti-city.The fracture mode of the Al_(1.25)CoCrFeNi_(3-x)W_(x) HEAs is ductile–brittle mixed fracture,and the crack propagates and initiates in the BCC phase.The eutectic lamellar structure impedes crack propagation and maintains plasticity. 展开更多
关键词 high-entropy alloy microstructure mechanical property fracture behavior
下载PDF
上一页 1 2 20 下一页 到第
使用帮助 返回顶部