An improved procedure for the preparation of China, BAD(P)H model. (S_s)- 1 -benzyl-3- (p-tolylsulfinyl)-1.4-dihydropyridine with satisfactary chemical yield and excellent enantiopurity is reported.
It is vitally important to develop high-efficiency low-cost catalysts to boost oxygen reduction reaction(ORR)for renewable energy conversion.Herein,an A-CoN_(3)S_(1)@C electrocatalyst with atomic CoN_(3)S_(1)active si...It is vitally important to develop high-efficiency low-cost catalysts to boost oxygen reduction reaction(ORR)for renewable energy conversion.Herein,an A-CoN_(3)S_(1)@C electrocatalyst with atomic CoN_(3)S_(1)active sites loaded on N,S-codoped porous carbon was produced by an atomic exchange strategy.The constructed A-CoN_(3)S_(1)@C electrocatalyst exhibits an unexpected half-wave potential(0.901 V vs.reversible hydrogen electrode)with excellent durability for ORR under alkaline conditions(0.1 M KOH),superior to the commercial platinum carbon(20 wt.%Pt/C).The outstanding performance of A-CoN_(3)S_(1)@C in ORR is due to the positive effect of S atoms doping on optimizing the electron structure of the atomic CoN_(3)S_(1)active sites.Moreover,the rechargeable zinc-air battery in which both A-CoN_(3)S_(1)@C and IrO_(2)were simultaneously served as cathode catalysts(A-CoN_(3)S_(1)@C&IrO_(2))exhibits higher energy efficiency,larger power density,as well as better stability,compared to the commercial Pt/C&IrO_(2)-based zinc-air battery.The present result should be helpful for developing lower cost and higher performance ORR catalysts which is expected to be used in practical applications in energy devices.展开更多
Accurate and clear bioimaging is crucial in the field of medical diagnosis.High-quality bioimaging requires to avoid the effects of ambient light as well as the absorption of biological tissues.Nearinfrared(NIR)narrow...Accurate and clear bioimaging is crucial in the field of medical diagnosis.High-quality bioimaging requires to avoid the effects of ambient light as well as the absorption of biological tissues.Nearinfrared(NIR)narrowband detectors located at wavelength from 650 to 900 nm can meet these requirements;thus,they are the potential solution.In this work,we construct a filter-free and self-power NIR narrowband photodetector based on the structure of n-CdSe/p-Sb_(2)(S_(1-x),Se_(x))_(3)heterojunction,and achieve a narrow spectral response at 735 nm with a full width at half-maximum of 35.3 nm in the detector.Further,the imaging characteristics of the NIR narrowband detector are explored,verifying the ability to narrowband detection and imaging.This filter-free and self-power NIR narrowband detector shows considerable promise in real-life applications.展开更多
Carbon-based materials are recognized as anodes fulling of promise for potassium ion batteries(PIBs)due to advantages of affordable cost and high conductivity.However,they still face challenges including structural un...Carbon-based materials are recognized as anodes fulling of promise for potassium ion batteries(PIBs)due to advantages of affordable cost and high conductivity.However,they still face challenges including structural unstability and slow kinetics.It is difficult to achieve efficient potassium storage with unmodified carbonaceous anode.Herein,atomic bismuth(Bi)sites with different atom coordinations anchored on carbon nanosheets(CNSs)have been synthesized through a template method.The properties of prepared multi-doping carbon anodes Bi-N_(3)S_(1)/CNSs,Bi-N_(3)P_(1)/CNSs and Bi-N_(4)/CNSs were probed in PIBs.The configuration Bi-N_(3)S_(1) with stronger charge asymmetry exhibits superior potassium storage performance compared to Bi-N_(3)P_(1) and Bi-N_(4) configurations.The Bi-N_(3)S_(1)/CNSs display a rate capacity of 129.2 mAh g^(-1)even at 10 A g^(-1)and an impressive cyclability characterized by over 5000 cycles at 5 A g^(-1),on account of its optimal coordination environment with more active Bi centers and K^(+)adsorption sites.Notably,assembled potassium-ion full cell Mg-KVO//Bi-N_(3)S_(1)/CNSs also shows an outstanding cycling stability,enduring 3000 cycles at 2 A g^(-1).Therefore,it can be demonstrated that regulating the electronic structure of metallic centre M-N_(4) via changing the type of ligating atom is a feasible strategy for modifying carbon anodes,on the base of co-doping metal and non-metal.展开更多
The construction of one-dimensional(1D)sulfides has attracted extensive attention for improving mi-crowave absorption(MA)performance owing to the anisotropic conductive networks.However,the syn-thesis of conductive 1D...The construction of one-dimensional(1D)sulfides has attracted extensive attention for improving mi-crowave absorption(MA)performance owing to the anisotropic conductive networks.However,the syn-thesis of conductive 1D hierarchical materials with unique interfacial polarization and excellent MA prop-erties remains challenging.In this study,cable-like MoS_(2)/Ni_(3)S_(2) was synthesized by a one-step hydrother-mal strategy.The complex permittivity of the binary composites could be improved by tuning the thick-ness of the MoS_(2) coating.Importantly,the construction of heterogeneous contacts by MoS_(2) and Ni_(3)S_(2) contributed to enhanced polarization loss,and the charge distribution was validated by electron holog-raphy.The wide efficient absorption bandwidth can reach above 4.8 GHz at a thin thickness.These new discoveries shed light on novel structures for 1D sulfide materials and the design of functional core-shell composites for microwave absorption.展开更多
基金the National Natural Science Foundation of China ! 29672031 Fang Min FU of Chengdu institute of or
文摘An improved procedure for the preparation of China, BAD(P)H model. (S_s)- 1 -benzyl-3- (p-tolylsulfinyl)-1.4-dihydropyridine with satisfactary chemical yield and excellent enantiopurity is reported.
基金the Natural Science Foundation of China(Nos.21631003 and 21871024)the Fundamental Research Funds for the Central Universities(Nos.FRF-BR-19-003B and FRF-BD-20-14A).
文摘It is vitally important to develop high-efficiency low-cost catalysts to boost oxygen reduction reaction(ORR)for renewable energy conversion.Herein,an A-CoN_(3)S_(1)@C electrocatalyst with atomic CoN_(3)S_(1)active sites loaded on N,S-codoped porous carbon was produced by an atomic exchange strategy.The constructed A-CoN_(3)S_(1)@C electrocatalyst exhibits an unexpected half-wave potential(0.901 V vs.reversible hydrogen electrode)with excellent durability for ORR under alkaline conditions(0.1 M KOH),superior to the commercial platinum carbon(20 wt.%Pt/C).The outstanding performance of A-CoN_(3)S_(1)@C in ORR is due to the positive effect of S atoms doping on optimizing the electron structure of the atomic CoN_(3)S_(1)active sites.Moreover,the rechargeable zinc-air battery in which both A-CoN_(3)S_(1)@C and IrO_(2)were simultaneously served as cathode catalysts(A-CoN_(3)S_(1)@C&IrO_(2))exhibits higher energy efficiency,larger power density,as well as better stability,compared to the commercial Pt/C&IrO_(2)-based zinc-air battery.The present result should be helpful for developing lower cost and higher performance ORR catalysts which is expected to be used in practical applications in energy devices.
基金China Postdoctoral Science Foundation Project,Grant/Award Numbers:2020M680101,2021T140233Fundamental Research Funds for the Central Universities,Grant/Award Number:2021XXJS028+2 种基金National Natural Science Foundation of China,Grant/Award Numbers:61725401,61904058,62050039the Graduates'Innovation Fund of Huazhong University of Science and Technology,Grant/Award Number:2021yjsCXCY051the National Key R&D Program of China,Grant/Award Number:2016YFA0204000。
文摘Accurate and clear bioimaging is crucial in the field of medical diagnosis.High-quality bioimaging requires to avoid the effects of ambient light as well as the absorption of biological tissues.Nearinfrared(NIR)narrowband detectors located at wavelength from 650 to 900 nm can meet these requirements;thus,they are the potential solution.In this work,we construct a filter-free and self-power NIR narrowband photodetector based on the structure of n-CdSe/p-Sb_(2)(S_(1-x),Se_(x))_(3)heterojunction,and achieve a narrow spectral response at 735 nm with a full width at half-maximum of 35.3 nm in the detector.Further,the imaging characteristics of the NIR narrowband detector are explored,verifying the ability to narrowband detection and imaging.This filter-free and self-power NIR narrowband detector shows considerable promise in real-life applications.
基金financially supported by the National Natural Science Foundation of China(22209057)the Guangzhou Basic and Applied Basic Research Foundation(2024A04J0839)。
文摘Carbon-based materials are recognized as anodes fulling of promise for potassium ion batteries(PIBs)due to advantages of affordable cost and high conductivity.However,they still face challenges including structural unstability and slow kinetics.It is difficult to achieve efficient potassium storage with unmodified carbonaceous anode.Herein,atomic bismuth(Bi)sites with different atom coordinations anchored on carbon nanosheets(CNSs)have been synthesized through a template method.The properties of prepared multi-doping carbon anodes Bi-N_(3)S_(1)/CNSs,Bi-N_(3)P_(1)/CNSs and Bi-N_(4)/CNSs were probed in PIBs.The configuration Bi-N_(3)S_(1) with stronger charge asymmetry exhibits superior potassium storage performance compared to Bi-N_(3)P_(1) and Bi-N_(4) configurations.The Bi-N_(3)S_(1)/CNSs display a rate capacity of 129.2 mAh g^(-1)even at 10 A g^(-1)and an impressive cyclability characterized by over 5000 cycles at 5 A g^(-1),on account of its optimal coordination environment with more active Bi centers and K^(+)adsorption sites.Notably,assembled potassium-ion full cell Mg-KVO//Bi-N_(3)S_(1)/CNSs also shows an outstanding cycling stability,enduring 3000 cycles at 2 A g^(-1).Therefore,it can be demonstrated that regulating the electronic structure of metallic centre M-N_(4) via changing the type of ligating atom is a feasible strategy for modifying carbon anodes,on the base of co-doping metal and non-metal.
基金Ministry of Science and Technology of China(973 Project Nos.2021YFA1200600 and 2018YFA0209100)National Natural Science Foundation of China(Nos.52231007,51725101,11727807)。
文摘The construction of one-dimensional(1D)sulfides has attracted extensive attention for improving mi-crowave absorption(MA)performance owing to the anisotropic conductive networks.However,the syn-thesis of conductive 1D hierarchical materials with unique interfacial polarization and excellent MA prop-erties remains challenging.In this study,cable-like MoS_(2)/Ni_(3)S_(2) was synthesized by a one-step hydrother-mal strategy.The complex permittivity of the binary composites could be improved by tuning the thick-ness of the MoS_(2) coating.Importantly,the construction of heterogeneous contacts by MoS_(2) and Ni_(3)S_(2) contributed to enhanced polarization loss,and the charge distribution was validated by electron holog-raphy.The wide efficient absorption bandwidth can reach above 4.8 GHz at a thin thickness.These new discoveries shed light on novel structures for 1D sulfide materials and the design of functional core-shell composites for microwave absorption.