An efficient sustainable and scalable strategy for the synthesis of porous cobalt/nitrogen co-doped carbons(Co@NCs) via pyrolysis of aniline-modified ZIFs,has been demonstrated.Aniline can coordinate and absorb on the...An efficient sustainable and scalable strategy for the synthesis of porous cobalt/nitrogen co-doped carbons(Co@NCs) via pyrolysis of aniline-modified ZIFs,has been demonstrated.Aniline can coordinate and absorb on the surface of ZIF(ZIF-CoZn3-PhA),accelerate the precipitation of ZIFs,thus resulting in smaller ZIF particle size.Meanwhile,the aniline on the surface of ZIF-CoZn3-PhA promotes the formation of the protective carbon shell and smaller Co nanoparticles,and increases nitrogen content of the catalyst.Because of these prope rties of Co@NC-PhA-3,the oxidative esterification of 5-hydroxymethylfurfural can be carried out under ambient conditions.According to our experimental and computational results,a synergistic catalytic effect between CoNx sites and Co nanoparticles has been established,in which both Co nanoparticles and CoNx can activate O2 while Co nanoparticles bind and oxidize HMF.Moreover,the formation and release of active oxygen species in CoNx sites are reinfo rced by the electronic interaction between Co nanoparticles and CoNx.展开更多
基金the Fundamental Research Funds for the Central Universities (No.30920021120)Key Laboratory of Biomass Energy and Material,Jiangsu Province (No. JSBEM201912) for financial supporta project funded by the Priority Academic Program development of Jiangsu Higher Education Institution。
文摘An efficient sustainable and scalable strategy for the synthesis of porous cobalt/nitrogen co-doped carbons(Co@NCs) via pyrolysis of aniline-modified ZIFs,has been demonstrated.Aniline can coordinate and absorb on the surface of ZIF(ZIF-CoZn3-PhA),accelerate the precipitation of ZIFs,thus resulting in smaller ZIF particle size.Meanwhile,the aniline on the surface of ZIF-CoZn3-PhA promotes the formation of the protective carbon shell and smaller Co nanoparticles,and increases nitrogen content of the catalyst.Because of these prope rties of Co@NC-PhA-3,the oxidative esterification of 5-hydroxymethylfurfural can be carried out under ambient conditions.According to our experimental and computational results,a synergistic catalytic effect between CoNx sites and Co nanoparticles has been established,in which both Co nanoparticles and CoNx can activate O2 while Co nanoparticles bind and oxidize HMF.Moreover,the formation and release of active oxygen species in CoNx sites are reinfo rced by the electronic interaction between Co nanoparticles and CoNx.