A promising anode material composed of SnS_2@CoS_2 flower-like spheres assembled from SnS_2 nanosheets and CoS_2 nanoparticles accompanied by reduced graphene oxide(rGO) was fabricated by a facile hydrothermal pathway...A promising anode material composed of SnS_2@CoS_2 flower-like spheres assembled from SnS_2 nanosheets and CoS_2 nanoparticles accompanied by reduced graphene oxide(rGO) was fabricated by a facile hydrothermal pathway. The presence of rGO and the combined merits of SnS_2 and CoS_2 endow the SnS_2@-CoS_2–rGO composite with high conductivity pathways and channels for electrons and with excellent properties as an anode material for sodium-ion batteries(SIBs). A high capacity of 514.0 mAh g^(-1) at a current density of200 m A g^(-1) after 100 cycles and a good rate capability can be delivered. The defined structure and good sodium-storage performance of the SnS_2@CoS_2–rGO composite demonstrate its promising application in high-performance SIBs.展开更多
基金supported by National Nature Science Foundation of China (11674187, 11604172, and 11504192)Program of Science and Technology in Qingdao City (165-1-2-jch)China Postdoctoral Science Foundation (2015M570570, and 2017M622138)
文摘A promising anode material composed of SnS_2@CoS_2 flower-like spheres assembled from SnS_2 nanosheets and CoS_2 nanoparticles accompanied by reduced graphene oxide(rGO) was fabricated by a facile hydrothermal pathway. The presence of rGO and the combined merits of SnS_2 and CoS_2 endow the SnS_2@-CoS_2–rGO composite with high conductivity pathways and channels for electrons and with excellent properties as an anode material for sodium-ion batteries(SIBs). A high capacity of 514.0 mAh g^(-1) at a current density of200 m A g^(-1) after 100 cycles and a good rate capability can be delivered. The defined structure and good sodium-storage performance of the SnS_2@CoS_2–rGO composite demonstrate its promising application in high-performance SIBs.