Highly active bifunctional oxygen electrocatalysts accelerate the development of high-performance Zn-air battery,but suffer from the mismatched activities of oxygen evolution reaction(OER)and oxygen reduced reaction(O...Highly active bifunctional oxygen electrocatalysts accelerate the development of high-performance Zn-air battery,but suffer from the mismatched activities of oxygen evolution reaction(OER)and oxygen reduced reaction(ORR).Herein,highly integrated bifunctional oxygen electrocatalysts,cobalt-tin alloys coated by nitrogen doped carbon(CoSn@NC)are prepared by MOFs-derived method.In this hybrid catalyst,the binary CoSn nanoalloys mainly contribute to highly active OER process while the Co(or Sn)-N-C serves as ORR active sites.Rational interaction between CoSn and NC donates more rapid reaction kinetics than Pt/C(ORR)and IrO_(2)(OER).Such CoSn@NC holds a promise as air-cathode electrocatalyst in Zn-air battery,superior to Pt/C+IrO_(2)catalyst.First-principles calculations predict that CoSn alloys can upgrade charge redistribution on NC and promote the transfer to reactants,thus optimizing the adsorption strength of oxygen-containing intermediates to boost the overall reactivity.The tuning of oxygenate adsorption by interactions between alloy and heteroatom-doped carbon can guide the design of bifunctional oxygen electrocatalysts.展开更多
基金This work was financially supported by Shanghai Science and Technology Innovation Action Plan(Program No.20DZ1204400)the Key Research Program of Frontier Science,Chinese Academy of Sciences(Grant No.QYZDJSSW-JSC013).
文摘Highly active bifunctional oxygen electrocatalysts accelerate the development of high-performance Zn-air battery,but suffer from the mismatched activities of oxygen evolution reaction(OER)and oxygen reduced reaction(ORR).Herein,highly integrated bifunctional oxygen electrocatalysts,cobalt-tin alloys coated by nitrogen doped carbon(CoSn@NC)are prepared by MOFs-derived method.In this hybrid catalyst,the binary CoSn nanoalloys mainly contribute to highly active OER process while the Co(or Sn)-N-C serves as ORR active sites.Rational interaction between CoSn and NC donates more rapid reaction kinetics than Pt/C(ORR)and IrO_(2)(OER).Such CoSn@NC holds a promise as air-cathode electrocatalyst in Zn-air battery,superior to Pt/C+IrO_(2)catalyst.First-principles calculations predict that CoSn alloys can upgrade charge redistribution on NC and promote the transfer to reactants,thus optimizing the adsorption strength of oxygen-containing intermediates to boost the overall reactivity.The tuning of oxygenate adsorption by interactions between alloy and heteroatom-doped carbon can guide the design of bifunctional oxygen electrocatalysts.