Nano/micro-scaled CoSnx alloy powders synthesized via carbothermal reduction at 800 ℃ with different compositions were characterized for anode materials in Li-ion battery. The synthesized spherical CoSnx particles sh...Nano/micro-scaled CoSnx alloy powders synthesized via carbothermal reduction at 800 ℃ with different compositions were characterized for anode materials in Li-ion battery. The synthesized spherical CoSnx particles show a loose nano/micro sized particle structural characteristic, which is apparently favorable for the improvement of cycling stability. The prepared CoSn3 alloy composite electrode exhibits a low initial irreversible capacity of ca.130 mAh·g-1 and a high specific capacity of ca.440 mAh·g-1 at constant current density of 100 mA·g-1. The relatively large particle size is considered to be the main reason for the lower irreversible capacity of CoSn3 electrode.展开更多
基金This work was financially supported by the National Natural Science Foundation of China (No.50371007).
文摘Nano/micro-scaled CoSnx alloy powders synthesized via carbothermal reduction at 800 ℃ with different compositions were characterized for anode materials in Li-ion battery. The synthesized spherical CoSnx particles show a loose nano/micro sized particle structural characteristic, which is apparently favorable for the improvement of cycling stability. The prepared CoSn3 alloy composite electrode exhibits a low initial irreversible capacity of ca.130 mAh·g-1 and a high specific capacity of ca.440 mAh·g-1 at constant current density of 100 mA·g-1. The relatively large particle size is considered to be the main reason for the lower irreversible capacity of CoSn3 electrode.