期刊文献+
共找到171篇文章
< 1 2 9 >
每页显示 20 50 100
绣球花状ZnIn_(2)S_(4)/CoWO_(4)S型异质结的构建及可见光催化产氢性能
1
作者 赵玉彤 王仕凯 +5 位作者 赵福萍 陈志合 赵丽杰 张大凤 葛博 蒲锡鹏 《高等学校化学学报》 SCIE EI CAS CSCD 北大核心 2024年第5期81-91,共11页
通过合理设计异质结结构来加速光催化产氢反应在高效光催化材料的开发中发挥着不可或缺的作用.ZnIn_(2)S_(4)(ZIS)由于其优异的光电性能和较负的导带位置,在光催化产氢领域受到了广泛关注,但其仍存在严重的光生载流子复合和团聚问题.为... 通过合理设计异质结结构来加速光催化产氢反应在高效光催化材料的开发中发挥着不可或缺的作用.ZnIn_(2)S_(4)(ZIS)由于其优异的光电性能和较负的导带位置,在光催化产氢领域受到了广泛关注,但其仍存在严重的光生载流子复合和团聚问题.为此,首先通过理论计算预测了ZnIn_(2)S_(4)/CoWO_(4)(ZIS/CWO)S型异质结的能带结构及电子转移路径,并通过电子局域函数和电荷密度差分确定了异质结界面处的电子交换.随后,采用超声-搅拌-煅烧法将CWO纳米颗粒分散并负载到ZIS花球表面,获得了绣球花状ZIS/CWOS型异质结光催化剂.由于ZIS与CWO之间紧密的界面以及形成的内部电场,致使ZIS/CWOS型异质结的光生电子-空穴对得到了有效分离,进而提高了光催化产氢效率.同时,实验结果确定了S型异质结的形成和载流子的传输路径,揭示了光催化反应机理. 展开更多
关键词 光催化产氢 S型异质结 ZnIn_(2)S_(4) cowo_(4) 理论计算
下载PDF
ZnCo_(2)O_(4)@CoWO_(4)纳米复合材料的制备工艺及电化学性能研究
2
作者 徐嵩林 李佳 +5 位作者 周仲鸿 崔士涛 马小雪 田月 相珺 赵荣达 《稀有金属与硬质合金》 CAS CSCD 北大核心 2024年第2期23-31,69,共10页
采用水热合成法在泡沫镍基体上生长ZnCo_(2)O_(4)纳米针阵列,并在其表面沉积CoWO_(4)纳米片,进而制备核壳ZnCo_(2)O_(4)@CoWO_(4)复合电极材料。利用SEM、XRD和电化学工作站表征了电极材料的微观形貌、相结构和电化学性能。结果表明:ZnC... 采用水热合成法在泡沫镍基体上生长ZnCo_(2)O_(4)纳米针阵列,并在其表面沉积CoWO_(4)纳米片,进而制备核壳ZnCo_(2)O_(4)@CoWO_(4)复合电极材料。利用SEM、XRD和电化学工作站表征了电极材料的微观形貌、相结构和电化学性能。结果表明:ZnCo_(2)O_(4)@CoWO_(4)电极材料的微观形貌呈棒状,CoWO_(4)纳米片紧紧地包裹在ZnCo_(2)O_(4)纳米针的表面,同时其电化学性能在单体的基础上明显提高。ZnCo_(2)O_(4)@CoWO_(4)复合电极材料具有高比容量,充放电循环性能增强,能有效地解决单体ZnCo_(2)O_(4)材料导电性差和体积膨胀带来的循环稳定性差的问题。 展开更多
关键词 电极材料 钴酸锌 钨酸钴 纳米复合材料 水热合成法 电化学性能
下载PDF
Synthesis and modification strategies of g-C_(3)N_(4) nanosheets for photocatalytic applications 被引量:5
3
作者 Long Chen Michael A.Maigbay +1 位作者 Miao Li Xiaoqing Qiu 《Advanced Powder Materials》 2024年第1期49-79,共31页
Graphitic carbon nitride nanosheets(CNNs)become the most promising member in the carbon nitride family benefitted from their two-dimensional structural features.Recently,great endeavors have been made in the synthesis... Graphitic carbon nitride nanosheets(CNNs)become the most promising member in the carbon nitride family benefitted from their two-dimensional structural features.Recently,great endeavors have been made in the synthesis and modification of CNNs to improve their photocatalytic properties,and many exciting progresses have been gained.In order to elucidate the fundamentals of CNNs based catalysts and provide the insights into rational design of photocatalysis system,we describe recent progress made in CNNs preparation strategies and their applications in this review.Firstly,the physicochemical properties of CNNs are briefly introduced.Secondly,the synthesis approaches of CNNs are reviewed,including top-down stripping strategies(thermal,gas,liquid,and composite stripping)and bottom-up precursor molecules design strategies(solvothermal,template,and supramolecular self-assembly method).Subsequently,the modification strategies based on CNNs in recent years are discussed,including crystal structure design,doping,surface functionalization,constructing 2D heterojunction,and anchoring single-atom.Then the multifunctional applications of g-C_(3)N_(4) nanosheet based materials in photocatalysis including H_(2) evolution,O_(2) evolution,overall water splitting,H_(2)O_(2) production,CO_(2) reduction,N_(2) fixation,pollutant removal,organic synthesis,and sensing are highlighted.Finally,the opportunities and challenges for the development of high-performance CNNs photocatalytic systems are also prospected. 展开更多
关键词 G-C_(3)N_(4) nanosheets Synthesis strategies Modified strategies Photocatalytic applications
下载PDF
基于Bi_(2)O_(3)/g-C_(3)N_(4)复合材料的自供能紫外探测器的制备及性能研究
4
作者 方向明 周起成 +3 位作者 郭庄鹏 朱恩科 郝瑜睿 高世勇 《光子学报》 EI CAS CSCD 北大核心 2024年第7期107-115,共9页
为了获得高性能的自供能紫外探测器,结合热聚法和溶液法成功制备了Bi_(2)O_(3)/g-C_(3)N_(4)复合材料,并对其微观形貌、晶体结构、元素组成及价态进行了表征。结果表明,Bi_(2)O_(3)呈蜂窝状结构的块体,其附着在具有层状结构的g-C_(3)N_... 为了获得高性能的自供能紫外探测器,结合热聚法和溶液法成功制备了Bi_(2)O_(3)/g-C_(3)N_(4)复合材料,并对其微观形貌、晶体结构、元素组成及价态进行了表征。结果表明,Bi_(2)O_(3)呈蜂窝状结构的块体,其附着在具有层状结构的g-C_(3)N_(4)纳米片上。基于该异质结制备了无需外加偏压即能工作的紫外探测器。在紫外光照射下,Bi_(2)O_(3)/g-C_(3)N_(4)光电探测器能够立即产生光电流并达到最大稳定值约0.43μA,相比于Bi_(2)O_(3)纳米块紫外探测器,其光电流提升了约1.05倍。值得注意的是,Bi_(2)O_(3)/g-C_(3)N_(4)紫外探测器还展现出了快的响应速度(约181.7 ms),并且其光电流与入射光强也具有良好的线性关系,表明该器件对不同强度的紫外光均能实现快速且稳定的探测。 展开更多
关键词 紫外探测器 自供能 Bi_(2)O_(3)纳米块 g-C_(3)N_(4)纳米片 异质结
下载PDF
Co-MOF as an electron donor for promoting visible-light photoactivities of g-C3N4 nanosheets for CO2 reduction 被引量:14
5
作者 Qiuyu Chen Sijia Li +4 位作者 Hongyi Xu Guofeng Wang Yang Qu Peifen Zhu Dingsheng Wang 《Chinese Journal of Catalysis》 SCIE EI CAS CSCD 北大核心 2020年第3期514-523,共10页
A possible mechanism for boosting the visible-light photoactivities of graphitic carbon nitride(g-C3N4)nanosheets for CO2 reduction via coupling with the electron donor Co-metal-organic framework(MOF)is proposed in th... A possible mechanism for boosting the visible-light photoactivities of graphitic carbon nitride(g-C3N4)nanosheets for CO2 reduction via coupling with the electron donor Co-metal-organic framework(MOF)is proposed in this study.Specifically,Co-MOF as an electron donor is capable of transferring the photogenerated electrons in the lowest unoccupied molecular orbital(LUMO)to the conduction band of g-C3N4 to facilitate charge separation.As expected,the prepared Co-MOF/g-C3N4 nanocomposites display excellent visible-light-driven photocatalytic CO2 reduction activities.The CO production rate of 6.75μmol g–1 h–1 and CH4 evolution rate of 5.47μmol g–1 h–1 are obtained,which are approximately 2 times those obtained with the original g-C3N4 under the same conditions.Based on a series of analyses,it is shown that the introduction of Co-MOF not only broadens the range of visible-light absorption but also enhances the charge separation,which improves the photocatalytic activity of g-C3N4 to a higher level.In particular,the hydroxyl radical(·OH)experiment was operated under 590 nm(single-wavelength)irradiation,which further proved that the photogenerated electrons in the LUMO of Co-MOF can successfully migrate to g-C3N4.This work may provide an important strategy for the design of highly efficient g-C3N4-based photocatalysts for CO2 reduction. 展开更多
关键词 Co-MOF g-C3N4 nanosheets Charge separation Visible-light photoactivity Photocatalytic CO2 conversion
下载PDF
Effect of rGO Coating on Interconnected Co_3O_4 Nanosheets and Improved Supercapacitive Behavior of Co_3O_4/rGO/NF Architecture 被引量:8
6
作者 Tinghui Yao Xin Guo +6 位作者 Shengchun Qin Fangyuan Xia Qun Li Yali Li Qiang Chen Junshuai Li Deyan He 《Nano-Micro Letters》 SCIE EI CAS 2017年第4期11-18,共8页
In this study, the effect of reduced graphene oxide(rGO) on interconnected Co_3O_4 nanosheets and the improved supercapacitive behaviors is reported. By optimizing the experimental parameters, we achieved a specific c... In this study, the effect of reduced graphene oxide(rGO) on interconnected Co_3O_4 nanosheets and the improved supercapacitive behaviors is reported. By optimizing the experimental parameters, we achieved a specific capacitance of ~1016.4 F g^(-1) for the Co_3O_4/rGO/NF(nickel foam) system at a current density of 1 A g^(-1). However, the Co_3O_4/NF structure without rGO only delivers a specific capacitance of ~520.0 F g^(-1)at the same current density. The stability test demonstrates that Co_3O_4/rGO/NF retains ~95.5% of the initial capacitance value even after 3000 charge–discharge cycles at a high current density of 7 A g^(-1). Further investigation reveals that capacitance improvement for the Co_3O_4/rGO/NF structure is mainly because of a higher specific surface area(~87.8 m^2g^(-1))and a more optimal mesoporous size(4–15 nm) compared to the corresponding values of 67.1 m^2g^(-1) and 6–25 nm,respectively, for the Co_3O_4/NF structure. rGO and the thinner Co_3O_4 nanosheets benefit from the strain relaxation during the charge and discharge processes, improving the cycling stability of Co_3O_4/rGO/NF. 展开更多
关键词 SUPERCAPACITORS rGO Co3O4 nanosheets Strain relaxation
下载PDF
High-performance self-assembly MnCo2O4 nanosheets for asymmetric supercapacitors 被引量:5
7
作者 Jianwei Li Dongbin Xiong +2 位作者 Linzhe Wang Maleki Kheimeh Sari Hirbod Xifei Li 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2019年第10期66-72,共7页
In this study,MnCo2O4 nanosheets were proposed to be utilized as an electrode material for supercapacitors.A two-step hydrothermal method with post-annealing treatment was employed in preparation of the nanostructures... In this study,MnCo2O4 nanosheets were proposed to be utilized as an electrode material for supercapacitors.A two-step hydrothermal method with post-annealing treatment was employed in preparation of the nanostructures.MnCo2O4 electrode delivered a high specific capacitance of 2000 F g^-1 at 0.5 A g^-1,remarkable high-rate capability of 1150 F g^-1 at 20 A g^-1,and an excellent cycling stability of 92.3%at 5 A g^-1 after 5000 cycles.It is found that a three-electrode supercapacitor based on MnCo2O4 exhibits a promising electrochemical performance,better than the other similar materials,benefited from the synergistic effects of MnCo2O4 nanosheets.In fact,the self-assembly of nanosheets structure with high specific surface area and mesoporous structure can potentially enhance the electrochemical performance of supercapacitors. 展开更多
关键词 HIGH-PERFORMANCE SELF-ASSEMBLY MnCo2O4 nanosheets ASYMMETRIC SUPERCAPACITORS
下载PDF
Novel PtPd alloy nanoparticle-decorated g-C_3N_4 nanosheets with enhanced photocatalytic activity for H_2 evolution under visible light irradiation 被引量:7
8
作者 Nan Xiao Songsong Li +5 位作者 Shuang Liu Boran Xu Yandong Li Yangqin Gao Lei Ge Guiwu Lu 《Chinese Journal of Catalysis》 SCIE EI CAS CSCD 北大核心 2019年第3期352-361,共10页
PtPd bimetallic alloy nanoparticle (NP)-modified graphitic carbon nitride (g-C3N4) nanosheet photocatalysts were synthesized via chemical deposition precipitation. Characterization of the photocatalytic H2 evolution o... PtPd bimetallic alloy nanoparticle (NP)-modified graphitic carbon nitride (g-C3N4) nanosheet photocatalysts were synthesized via chemical deposition precipitation. Characterization of the photocatalytic H2 evolution of the g-C3N4 nanosheets shows that it was significantly enhanced when PtPd alloy NPs were introduced as a co-catalyst. The 0.2 wt% PtPd/g-C3N4 composite photocatalyst gave a maximum H2 production rate of 1600.8 μmol g^–1 h^–1. Furthermore, when K2HPO4 was added to the reaction system, the H2 production rate increased to 2885.0 μmol g^–1 h^–1. The PtPd/g-C3N4 photocatalyst showed satisfactory photocatalytic stability and was able to maintain most of its photocatalytic activity after four experimental photocatalytic cycles. In addition, a possible mechanism for the enhanced photocatalytic activity was proposed and verified by various photoelectric techniques. These results demonstrate that the synergistic effect between PtPd and g-C3N4 helps to greatly improve the photocatalytic activity of the composite photocatalyst. 展开更多
关键词 g-C3N4 nanosheets PtPd alloy nanoparticles H2 evolution PHOTOCATALYSIS
下载PDF
The Preparation of CoWO_4/WO_3 Nanocomposite Powder 被引量:3
9
作者 邵刚勤 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS 2004年第2期1-3,共3页
Ammonium metatungstate and cobalt nitrate were mixed at the molecular level in distilled water and then spray-decomposed to CoWO_4/WO_3 nanocomposite powder.The particle morphology,crystalline size,forming course,chem... Ammonium metatungstate and cobalt nitrate were mixed at the molecular level in distilled water and then spray-decomposed to CoWO_4/WO_3 nanocomposite powder.The particle morphology,crystalline size,forming course,chemical composition and phase structure of the powder were studied by SEM,TEM,DTA-TG,IR and XRD,respectively.Results show that the powder is homogeneous,spherical and nano-aggregated. 展开更多
关键词 cowo_4/WO_3 NANOCOMPOSITE POWDER
下载PDF
Fast electron transfer and enhanced visible light photocatalytic activity by using poly-o-phenylenediamine modified AgCl/g-C_3N_4 nanosheets 被引量:5
10
作者 Linlin Sun Chongyang Liu +5 位作者 Jinze Li Yaju Zhou Huiqin Wang Pengwei Huo Changchang Ma Yongsheng Yan 《Chinese Journal of Catalysis》 SCIE EI CAS CSCD 北大核心 2019年第1期80-94,共15页
Exfoliation of bulk graphitic carbon nitride(g‐C3N4)into two‐dimensional(2D)nanosheets is one of the effective strategies to improve its photocatalytic properties so that the 2D g‐C3N4 nanosheets(CN)have larger spe... Exfoliation of bulk graphitic carbon nitride(g‐C3N4)into two‐dimensional(2D)nanosheets is one of the effective strategies to improve its photocatalytic properties so that the 2D g‐C3N4 nanosheets(CN)have larger specific surface areas and more reaction sites.In addition,poly‐o‐phenylenediamine(PoPD)can improve the electrical conductivity and photocatalytic activity of semiconductor materials.Here,the novel efficient composite PoPD/AgCl/g‐C3N4 nanosheets was first synthesized by a precipitation reaction and the photoinitiated polymerization approach.The obtained photocatalysts have larger specific surface areas and could achieve better visible‐light response.However,silver chloride(AgCl)is susceptible to agglomeration and photocorrosion.The PoPD/AgCl/CN composite exhibits an extremely high photocurrent density,which is three times that of CN.Obviously enhanced photocatalytic activities of PoPD/AgCl/g‐C3N4 are revealed through the photodegradation of tetracycline.The stability of PoPD/AgCl/CN is demonstrated based on four cycles of experiments that reveal that the degradation rate only decreases slightly.Furthermore,.O2^-and h+are the main active species,which are confirmed through a trapping experiment and ESR spin‐trap technique.Therefore,the prepared PoPD/AgCl/CN can be considered as a stable photocatalyst,in which PoPD is added as a charge carrier and acts a photosensitive protective layer on the surface of the AgCl particles.This provides a new technology for preparing highly stable composite photocatalysts that can effectively deal with environmental issues. 展开更多
关键词 g‐C3N4 nanosheets AGCL Poly‐o‐phenylenediamine Visible light irradiation PHOTOCATALYTIC
下载PDF
One-step Synthesis and Photocatalytic Degradation Performance of Sulfur-doped Porous g-C_(3)N_(4)Nanosheets 被引量:2
11
作者 Liu Yuan Zhao Hua +1 位作者 Li Huipeng Cai Tianfeng 《China Petroleum Processing & Petrochemical Technology》 SCIE CAS 2022年第1期81-89,共9页
In this study,the sulfur-doped porous g-C_(3)N_(4) nanosheets(CN-T-U 1.75)were synthesized successfully by onestep calcination utilizing urea and thiourea as precursors.Under visible light irradiation,CN-T-U 1.75 show... In this study,the sulfur-doped porous g-C_(3)N_(4) nanosheets(CN-T-U 1.75)were synthesized successfully by onestep calcination utilizing urea and thiourea as precursors.Under visible light irradiation,CN-T-U 1.75 showed remarkable photocatalytic activity for Rhodamine B(RhB)degradation with a kinetic reaction rate constant of 0.01838 min^(-1).The characterization analysis indicated that CN-T-U 1.75 had a higher specific surface area and the doping altered the energy band structure.This work offers a new viewpoint on modifying the band structure of a photocatalyst using a doping strategy,as well as new insights into the generation routes of active species involved in the photocatalytic process. 展开更多
关键词 sulfur-doped g-C3N4 nanosheets PHOTOCATALYSIS degradation
下载PDF
Oxygen-doping of ZnIn_(2)S_(4) nanosheets towards boosted photocatalytic CO_(2) reduction 被引量:3
12
作者 Bao Pan Yu Wu +4 位作者 Baker Rhimi Jiani Qin Ying Huang Mingzhe Yuan Chuanyi Wang 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2021年第6期1-9,I0001,共10页
Engineering the electronic properties of semiconductor-based photocatalysts using elemental doping is an effective approach to improve their catalytic activity.Nevertheless,there still remain contradictions regarding ... Engineering the electronic properties of semiconductor-based photocatalysts using elemental doping is an effective approach to improve their catalytic activity.Nevertheless,there still remain contradictions regarding the role of the dopants played in photocatalysis.Herein,ultrathin ZnIn_(2)S_(4)(ZIS) nanosheets with oxygen doping were synthesized by a one-pot solvothermal method.XRD,XPS and Raman spectral measurements support the presence of lattice oxygen in the oxygen-doped ZIS(O-ZIS) sample.With optimum doping of oxygen,the ultrathin O-ZIS nanosheets show enhanced CO_(2)-to-CO conversion activity with a CO_(2)-evolving rate of 1680 μmol h^(-1) g^(-1) under visible light irradiation,which is about 7 times higher than that of the pristine ZIS.First-principle calculations support that doping of oxygen in the lattice of ZnIn_(2)S_(4) nanosheets plays a key role in tuning its electronic properties.The remarkable photocatalytic performance of O-ZIS can be assigned to a synergistic consequence of a unique ultrathin-layered structure and an upward shift of the conduction band minimum(CBM) caused by the oxygen doping into ZIS and the quantum confinement effect(QCE) induced by the decreased particle size after doping as well as to the improved charge separation efficiency.The present work offers a simple elemental doping method to promote charge separation at atomic level and illustrates the roles played by oxygen doping in photocatalysis,giving new insights into highly efficient artificial photosynthesis. 展开更多
关键词 ZnIn_(2)S_(4) nanosheets Oxygen doping Electronic properties PHOTOCATALYSIS CO_(2)reduction
下载PDF
Anchoring Ni single atoms on sulfur-vacancy-enriched ZnIn_(2)S_(4) nanosheets for boosting photocatalytic hydrogen evolution 被引量:3
13
作者 Jingwen Pan Gongxin Zhang +5 位作者 Zhongjie Guan Qianyu Zhao Guoqiang Li Jianjun Yang Qiuye Li Zhigang Zou 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2021年第7期408-414,共7页
Structure manipulation of photocatalysts at an atomic scale is a promising way to improve its photocatalytic performance.Herein,we realize the anchoring of single Ni atoms on the ZnIn_(2)S_(4) nanosheets with rich sul... Structure manipulation of photocatalysts at an atomic scale is a promising way to improve its photocatalytic performance.Herein,we realize the anchoring of single Ni atoms on the ZnIn_(2)S_(4) nanosheets with rich sulfur vacancies.Experimental results demonstrate that single Ni atoms induce the formation of NiO-M(Zn/In) atomic interface,which can efficiently promote the carriers separation and prolong the carrier life time.In addition,in situ electron spin resonance spectroscopy(ESR) confirms that the single Ni atoms act as an electron trapping center for protons reduction.As a result,the single Ni atoms decorated ZnIn_(2)S_(4) nanosheets with rich sulfur vacancies(Ni/ZnIn_(2)S_(4)-RVs) shows a hydrogen evolution rate up to 89.4 μmol h^(-1), almost 5.7 and 2.3 times higher compared to that of ZnIn_(2)S_(4) nanosheets with poor sulfur vacancies and rich sulfur vacancies(denoted as ZnIn_(2)S_(4)-PVs and ZnIn_(2)S_(4)-RVs).This work opens up a new perspective manipulating the single-atom cocatalyst and sulfur vacancy on sulfide supports for improving photocatalytic hydrogen evolution. 展开更多
关键词 ZnIn_(2)S_(4)nanosheets Sulfur vacancies Single-atom Ni Charge carriers separation Photocatalytic hydrogen evolution
下载PDF
A comparison of H^+-restacked nanosheets and nanoscrolls derived from K_4Nb_6O_(17) for visible-light degradation of dyes 被引量:1
14
作者 Chenhui Hu Lihong Zhang +3 位作者 Liyuan Cheng Jing Chen Wenhua Hou Weiping Ding 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2014年第2期136-144,共9页
H+-restacked nanosheets and nanoscrolls peeled from K4Nb6O17 display different structures and surface characters. The two restacked samples with increased surface areas have an amazing visible-light response for the ... H+-restacked nanosheets and nanoscrolls peeled from K4Nb6O17 display different structures and surface characters. The two restacked samples with increased surface areas have an amazing visible-light response for the photodegradation of dyes, which is superior to commercial TiO2 (P25) and Nb205. By comparison, H+/nanosheets have a relatively faster photodegradation rate originated from large and smooth basal plane. The work reveals that dye adsorbed on the unfolded nanosheets can effectively harvest sunlight. Due to facile preparation, low-cost and high photocatalytic efficiency, H+/nanosheets and H+/nanoscrolls might be used for the visible light-driven degradation of organic dyes as a substitute for TiO2 in industry. 展开更多
关键词 K4Nb6O17 nanosheets nanoscrolls PHOTODEGRADATION DYE
下载PDF
Visible light-driven oxidant-free dehydrogenation of alcohols in water using porous ultrathin g-C_(3)N_(4)nanosheets 被引量:2
15
作者 Wei Zhang Jiajun Wang +2 位作者 Zewei Liu Yibing Pi Rong Tan 《Green Energy & Environment》 SCIE EI CSCD 2022年第4期712-722,共11页
Graphitic carbon nitride(g-C_(3)N_(4)) is a fascinating photocatalyst for solar energy utilization in photo-catalysis.Nevertheless,it often suffers from moderate photo-catalytic activity due to its low specific surfac... Graphitic carbon nitride(g-C_(3)N_(4)) is a fascinating photocatalyst for solar energy utilization in photo-catalysis.Nevertheless,it often suffers from moderate photo-catalytic activity due to its low specific surface area and fast recombination rate of photogenerated electrons upon photo-excitation.Herein,we overcome the bottlenecks by constructing a porous g-C_(3)N_(4) nanosheet(PCNS)through a simple thermal oxidation etching method.Benefited from its porous layer structure,the obtained PCNS exhibits large specific surface area,efficient separation of photogenerated charge carriers,as well as high exposure of active sites.As a result,it is robust and universal in visible light-driven dehydrogenation of alcohols in water under oxidant-free condition.Almost quantitative yields(>99%)of various valuable carbonyl compounds were obtained over PCNS,while bulk g-C_(3)N_(4) was far less efficient.Moreover,the photo-catalyst was highly stable and could be facilely recovered from the aqueous system for efficient reuse.The easy preparation and excellent performance made PCNS a promising and competitive photocatalyst for the solar applications. 展开更多
关键词 PHOTO-CATALYSIS Porous g-C_(3)N_(4)nanosheets Visible light irradiation Oxidant-free dehydrogenation ALCOHOLS
下载PDF
Thermal decomposition effect of MgCo_(2)O_(4)nanosheets on ammonium perchlorate-based energetic molecular perovskites 被引量:2
16
作者 Er-hai An Xiao-xia Li +3 位作者 Hai-xia Zhao Ying-xin Tan Xiong Cao Peng Deng 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2023年第2期111-119,共9页
Energetic molecular perovskites have attracted widespread attention in the fields of energy materials due to their high detonation performance.In this work,we reported the effect of MgCo_(2)O_(4) nanosheets on the the... Energetic molecular perovskites have attracted widespread attention in the fields of energy materials due to their high detonation performance.In this work,we reported the effect of MgCo_(2)O_(4) nanosheets on the thermal decomposition of ammonium perchlorate(NH_(4)ClO_(4),AP)-based energetic molecular perovskites(AP-based energetic molecular perovskites).The morphology and structure of the MgCo_(2)O_(4) nanosheets were characterized.And their catalytic effect on the thermal decomposition of AP-based energetic molecular perovskites(H_2pz)[NH_(4)(ClO_(4))_(3)](PAP-4),(H_2dabco)[NH_(4)(ClO_(4))_(3)](DAP-4),(H_2mpz)[NH_(4)(ClO_(4))_(3)](PAP-M_(4)),and (H_2hpz)[NH_(4)(ClO_(4))_(3)](PAP-H_(4)) was analyzed.The results showed that MgCo_(2)O_(4) nanosheets had excellent intrinsically catalytic performance towards enhancing the thermal decomposition of AP-based energetic molecular perovskites.After adding MgCo_(2)O_(4) nanosheets,the thermal decomposition peak temperatures of PAP-4,DAP-4,PAP-M_(4),and PAP-H_(4) had been reduced by35.7℃,48.4℃,37.9℃,and 43.6℃,respectively.And the activation energy(Ea)of the thermal decomposition of AP-based energetic molecular perovskites had been reduced,the Eaof PAP-H_(4) decreased by 46.4 kJ/mol at most among them.The catalytic mechanism of MgCo_(2)O_(4) nanosheets for AP-based energetic molecular perovskites is analyzed.This work provides a reference for the future application of AP-based energetic molecular perovskites. 展开更多
关键词 AP-based energetic molecular perovskites MgCo_(2)O_(4)nanosheets Thermal decomposition Catalytic performance
下载PDF
Pyrazine-nitrogen-rich exfoliated C4N nanosheets as efficient metal-free polymeric catalysts for oxygen reduction reaction 被引量:1
17
作者 Yuan Li Chunshao Mo +1 位作者 Jing Li Dingshan Yu 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2020年第10期243-247,共5页
Herein,we for the first time demonstrate the synthesis of exfoliated C4N nanosheets via a top-down approach and exploit their use as a new class of organic polymeric catalyst for the oxygen reduction reaction(ORR).The... Herein,we for the first time demonstrate the synthesis of exfoliated C4N nanosheets via a top-down approach and exploit their use as a new class of organic polymeric catalyst for the oxygen reduction reaction(ORR).The obtained C4N nanosheets are semi-conductive with a small band gap of 1.41 eV and contain abundant pyrazine-nitrogen moieties uniformly distributed throughout C4N.Density function theory calculations reveal that the intramolecular charge transfer induced by pyrazine-nitrogen in C4N enables effective charge redistribution to activate the conjugated structure and facilitate the oxygen adsorption,while the exfoliated sheet-like C4N formation renders improved electrochemical active surface area and results in high exposure of active sites.As a result,despite the bulk C4N is not active,the sheet-like C4N yield markedly improved ORR performance,even on a par with the commercial Pt/C catalyst.Our recent findings not only enrich the family members of two-dimensional conjugated polymer nanosheets but also open up new opportunity to explore new metal-free organic polymeric materials for efficient oxygen reduction catalysis and beyond. 展开更多
关键词 Oxygen reduction reaction Metal-free electrocatalyst Polymeric electrocatalysts C4N nanosheets Pyrazine-nitrogen
下载PDF
High rate and ultralong life flexible all-solid-state zinc ion battery based on electron density modulated NiCo_(2)O_(4) nanosheets 被引量:1
18
作者 Wenda Qiu Yunlei Tian +9 位作者 Zhenchao Lin Shuting Lin Zhangqi Geng Kaitao Huang Aihua Lei Fuchun Huang Huajie Feng Fengze Ding Yu Li Xihong Lu 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2022年第7期283-291,I0008,共10页
The development of zinc ion batteries (ZIBs) with large capacity,high rate,and durable cathode material is a crucial and urgent task.Ni Co_(2)O_(4)(NCO) has received ever-growing interest as a potential cathode materi... The development of zinc ion batteries (ZIBs) with large capacity,high rate,and durable cathode material is a crucial and urgent task.Ni Co_(2)O_(4)(NCO) has received ever-growing interest as a potential cathode material for ZIBs,owing to the high theoretical capacity,rich source,cost-effective,and versatile redox nature.However,due to the slow dynamics of the NCO electrodes,its practical application in highperformance systems is severely limited.Herein,we report an electron density modulated NCO nanosheets (N-NCO NSs) with high-kinetics Zn^(2+)-storage capability as an additive-free cathode for flexible all-solid-state (ASS) ZIBs.By virtue of the enhanced electronic conductivity,improved reaction kinetics,and increased active sites,the optimized N-NCO NSs electrode delivers a high capacity of 357.7 m Ah g^(-1)at 1.0 A g^(-1)and a superior rate capacity of 201.4 m Ah g^(-1)at 20 A g^(-1).More importantly,a flexible ASS ZIBs device is manufactured using a solid polymer electrolyte of a poly (vinylidene fluoride hexafluoropropylene)(PVDF-HFP) film.The flexible ASS ZIBs device shows superb durability with 80.2%capacity retention after 20,000 cycles and works well in the range of-20–70℃.Furthermore,the flexible ASS ZIBs achieves an impressive energy density as high as 578.1 W h kg^(-1)with a peak power density of 33.6 k W kg^(-1),substantially outperforming those latest ZIBs.This work could provide valuable insights for constructing high-kinetics and high-capability cathodes with long-term stability for flexible ASS ZIBs. 展开更多
关键词 Electron densities modulation NiCo_(2)O_(4)nanosheets ALL-SOLID-STATE FLEXIBLE Zinc ion batteries
下载PDF
Achieving highly selective electrochemical CO_(2) reduction to C_(2)H_(4) on Cu nanosheets 被引量:1
19
作者 Huan Xie Ruikuan Xie +6 位作者 Zhiyuan Zhang Yongyu Pang Yuting Luo Jiong Li Bilu Liu Maria-Magdalena Titirici Guoliang Chai 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2023年第4期312-320,共9页
The conversion of CO_(2)into value-added chemicals coupled with the storage of intermittent renewable electricity is attractive.CuO nanosheets with an average size and thickness of~30 and~20 nm have been developed,whi... The conversion of CO_(2)into value-added chemicals coupled with the storage of intermittent renewable electricity is attractive.CuO nanosheets with an average size and thickness of~30 and~20 nm have been developed,which are in situ reduced into Cu nanosheets during electrochemical CO_(2)reduction reaction(ECO_(2)RR).The derived Cu nanosheets demonstrate much higher selectivity for C2H4production than commercial CuO derived Cu powder,with an optimum Faradaic efficiency of 56.2%and a partial current density of C_(2)H_(4)as large as 171.0 mA cm^(-2)in a gas diffusion flow cell.The operando attenuated total reflectance-Fourier transform infrared spectra measurements and density functional theory simulations illustrate that the high activity and selectivity of Cu nanosheets originate from the edge sites on Cu nanosheets with a coordinate number around 5(4–6),which facilitates the formation of^(*)CHO rather than^(*)COH intermediate,meanwhile boosting the C-C coupling reaction of^(*)CO and^(*)CHO intermediates,which are the critical steps for C_(2)H_(4)formation. 展开更多
关键词 Electrochemical CO_(2)reduction Cu nanosheets C_(2)H_(4) High selectivity Coordination number
下载PDF
Synthesis mechanism of nanoporous Sn_3O_4 nanosheets by hydrothermal process without any additives
20
作者 赵俊华 谭瑞琴 +7 位作者 杨晔 许炜 李佳 沈文峰 吾国强 朱友良 杨旭峰 宋伟杰 《Chinese Physics B》 SCIE EI CAS CSCD 2015年第6期466-469,共4页
Nanoporous anorthic-phase Sn3O4 nanosheets are successfully fabricated via a hydrothermal process without any additives. With the pH value of the precursor increasing from 2.0 to 11.8, the valence of the precursor cha... Nanoporous anorthic-phase Sn3O4 nanosheets are successfully fabricated via a hydrothermal process without any additives. With the pH value of the precursor increasing from 2.0 to 11.8, the valence of the precursor changes from mixed valence (the ratio of Sn2+ to Sn4+ is 2.7: 1) to pure bivalent, and the product transformed from Sn3O4 to SnO mesocrystals. When doping SbC13 to the alkaline precursor, the valence of the precursor shows mixed valence with the ratio of Sn2+ to Sn4+ being 2.6: I and Sn3O4 is synthesized after the hydrothermal process. The valence state of Sn species in the precursor is the key factor of the formation of Sn3O4. The synthesis mechanism is discussed and proposed. These experimental results expand the knowledge base that can be used to guide technological applications of intermediate tin oxide materials. 展开更多
关键词 Sn3O4 nanosheets hydrothermal synthesis valence control PRECURSOR
下载PDF
上一页 1 2 9 下一页 到第
使用帮助 返回顶部