Precise design and synthesis of sub-nano scale catalysts with controllable electronic and geometric structures are pivotal for enhancing the hydrogen evolution reaction(HER)performance of molybdenum sulfide(MoS_(2))an...Precise design and synthesis of sub-nano scale catalysts with controllable electronic and geometric structures are pivotal for enhancing the hydrogen evolution reaction(HER)performance of molybdenum sulfide(MoS_(2))and unraveling its structure−activity relationship.By leveraging transition molybdenum polysulfide clusters as functional units for multi-level ordering,we successfully designed and synthesized MoS_(x)nanowire networks derived from[Mo_(3)S_(13)]^(2−) clusters via evaporationinduced self-assembly,which exhibit enhanced HER activity attributed to a high density of active sites and dynamic evolution behavior under cathodic potentials.MoS_(x) nanowire networks electrode yields a current density of 100 mA·cm^(−2) at 142 mV in 0.5 M H_(2)SO_(4).This work provides an attractive prospect for optimizing catalysts at the sub-nano scale and offers insights into a strategy for designing catalysts in various gas evolution reactions.展开更多
Photothermal carbon dioxide hydrogenation represents a promising route to reduce the emission of greenhouse gas CO_(2)and produce value-added chemicals,but the selectivity and stability of photothermal catalysts need ...Photothermal carbon dioxide hydrogenation represents a promising route to reduce the emission of greenhouse gas CO_(2)and produce value-added chemicals,but the selectivity and stability of photothermal catalysts need to be improved.Herein,we report the rational fabrication of well-defined Ag_(24)Au cluster decorated highly ordered nanorod-like mesoporous Co_(3)O_(4)(Ag_(24)Au/mesoCo_(3)O_(4))for highly efficient and selective CO_(2)hydrogenation.The orderly assembled meso-Co_(3)O_(4)nanorods were prepared via a nanocasting method,offering large surface area and abundant active sites for CO_(2)adsorption and conversion.Moreover,the catalytic activity and selectivity were further improved by molecule-like Ag_(24)Au cluster decoration and reaction temperature optimization.The Ag_(24)Au/meso-Co_(3)O_(4)composite catalyst exhibited an ultrahigh CH_(4)yield rate of 204 mmol·g^(−1)·h^(−1)and a greatly improved CH_(4)selectivity of 82%for CO_(2)hydrogenation,significantly higher than those of pristine meso-Co_(3)O_(4)catalyst.The mechanism of the photothermal catalytic performance improvement was verified by CO_(2)temperature-programmed desorption and time-resolved transient photoluminescence,revealing that CO_(2)molecules underwent a vigorous adsorption and rapid activation process over Ag_(24)Au/meso-Co_(3)O_(4).The hot electrons created by the localized surface plasmon resonance effect of Ag_(24)Au clusters facilitated the charge transfer for subsequent multi-electron CO_(2)hydrogeneration processes,resulting in a significant increase in the productivity and selectivity for CO_(2)-to-CH_(4)conversion.This work suggests that the rational coupling of well-defined metal atom clusters and ordered transition metal compound nanostructures could open a new avenue towards photoinduced green chemistry processes for efficient CO_(2)recycling and reutilization.展开更多
基金supported by Innovation Support Programme(Soft Science Research)Project Achievements of Jiangsu Province(No.BK20231514)the National College Student Innovation and Entrepreneurship Training Program(NO.202310293173K).
文摘Precise design and synthesis of sub-nano scale catalysts with controllable electronic and geometric structures are pivotal for enhancing the hydrogen evolution reaction(HER)performance of molybdenum sulfide(MoS_(2))and unraveling its structure−activity relationship.By leveraging transition molybdenum polysulfide clusters as functional units for multi-level ordering,we successfully designed and synthesized MoS_(x)nanowire networks derived from[Mo_(3)S_(13)]^(2−) clusters via evaporationinduced self-assembly,which exhibit enhanced HER activity attributed to a high density of active sites and dynamic evolution behavior under cathodic potentials.MoS_(x) nanowire networks electrode yields a current density of 100 mA·cm^(−2) at 142 mV in 0.5 M H_(2)SO_(4).This work provides an attractive prospect for optimizing catalysts at the sub-nano scale and offers insights into a strategy for designing catalysts in various gas evolution reactions.
基金supports from the National Key Research&Development Program of China(No.2017YFA0208200)the National Natural Science Foundation of China(Nos.22022505 and 21872069)+1 种基金the Fundamental Research Funds for the Central Universities(No.0205-14380266)the 2021 Suzhou Gusu Leading Talents of Science and Technology Innovation and Entrepreneurship in Wujiang District.
文摘Photothermal carbon dioxide hydrogenation represents a promising route to reduce the emission of greenhouse gas CO_(2)and produce value-added chemicals,but the selectivity and stability of photothermal catalysts need to be improved.Herein,we report the rational fabrication of well-defined Ag_(24)Au cluster decorated highly ordered nanorod-like mesoporous Co_(3)O_(4)(Ag_(24)Au/mesoCo_(3)O_(4))for highly efficient and selective CO_(2)hydrogenation.The orderly assembled meso-Co_(3)O_(4)nanorods were prepared via a nanocasting method,offering large surface area and abundant active sites for CO_(2)adsorption and conversion.Moreover,the catalytic activity and selectivity were further improved by molecule-like Ag_(24)Au cluster decoration and reaction temperature optimization.The Ag_(24)Au/meso-Co_(3)O_(4)composite catalyst exhibited an ultrahigh CH_(4)yield rate of 204 mmol·g^(−1)·h^(−1)and a greatly improved CH_(4)selectivity of 82%for CO_(2)hydrogenation,significantly higher than those of pristine meso-Co_(3)O_(4)catalyst.The mechanism of the photothermal catalytic performance improvement was verified by CO_(2)temperature-programmed desorption and time-resolved transient photoluminescence,revealing that CO_(2)molecules underwent a vigorous adsorption and rapid activation process over Ag_(24)Au/meso-Co_(3)O_(4).The hot electrons created by the localized surface plasmon resonance effect of Ag_(24)Au clusters facilitated the charge transfer for subsequent multi-electron CO_(2)hydrogeneration processes,resulting in a significant increase in the productivity and selectivity for CO_(2)-to-CH_(4)conversion.This work suggests that the rational coupling of well-defined metal atom clusters and ordered transition metal compound nanostructures could open a new avenue towards photoinduced green chemistry processes for efficient CO_(2)recycling and reutilization.