期刊文献+
共找到4篇文章
< 1 >
每页显示 20 50 100
Treatment of pharmaceutical wastewater containing recalcitrant compounds in a Fenton-coagulation process 被引量:3
1
作者 Bukuru Godefroid 《Journal of Environmental Sciences》 SCIE EI CAS CSCD 2006年第3期459-463,共5页
The advanced treatment using integrated Fenton's reaction and coagulation process was investigated in this study. Before the advancement, the pharmaceutical wastewater containing lincomycin hydrochloride was pretreat... The advanced treatment using integrated Fenton's reaction and coagulation process was investigated in this study. Before the advancement, the pharmaceutical wastewater containing lincomycin hydrochloride was pretreated by UASB (upflow anaerobic sludge bed) and a SBR (sequencing batch reactor) process. The residual recalcitrant compounds, measured by gas chromatographymass spectrometry (GC-MS), mainly consisted of alcohols, phenols, and nitrogenous and sulfur compounds. The experimental results indicated that when the Fenton's reaction was conducted at pH=3.0, H2O2CODOcr=0.27, H2O2/Fe^2+=3:1 and 30 min of reaction time, and the coagulation process operated at a sulfate aluminum concentration of 800 mg/L and pH value of 5.0, the color and COD in the wastewater decreased by 94% and 73%, respectively; with a finale COD concentration of 267 mg/L and color level of 40 units, meeting the secondary standard of GB8978-1996 for industrial wastewater. 展开更多
关键词 pharmaceutical wastewater GC-MS recalcitrant compounds Fenton's reaction coagulation process advanced wastewater treatment
下载PDF
Review on Optimization of Drinking Water Treatment Process 被引量:1
2
作者 Mohamed Farhaoui Mustapha Derraz 《Journal of Water Resource and Protection》 2016年第8期777-786,共10页
In the drinking water treatment processes, the optimization of the treatment is an issue of particular concern. In general, the process consists of many units as settling, coagulation, flocculation, sedimentation, fil... In the drinking water treatment processes, the optimization of the treatment is an issue of particular concern. In general, the process consists of many units as settling, coagulation, flocculation, sedimentation, filtration and disinfection. The optimization of the process consists of some measures to decrease the managing and monitoring expenses and improve the quality of the produced water. The objective of this study is to provide water treatment operators with methods and practices that enable to attain the most effective use of the facility and in consequence optimize the cubic meter price of the treated water. This paper proposes a review on optimization of drinking water treatment process by analyzing all of the water treatment units and gives some solutions in order to maximize the water treatment performances without compromising the water quality standards. Some practical solutions and methods are performed in the water treatment plant located in the middle of Morocco (Meknes). 展开更多
关键词 OPTIMIZATION coagulation process Turbidity Removal Water Treatment
下载PDF
Purification and characterization of Al_(13) species in coagulant polyaluminum chloride 被引量:5
3
作者 GAO Baoyu CHU Yongbao +1 位作者 YUE Qinyan WANG Yan 《Journal of Environmental Sciences》 SCIE EI CAS CSCD 2009年第1期18-22,共5页
Nano-Al13 was separated and purified by four methods to investigate its characteristic, and was analyzed by Al-Ferron timed complexation spectrophotometer, ^27Al-NMR (nuclear magnetic resonance), and transmission el... Nano-Al13 was separated and purified by four methods to investigate its characteristic, and was analyzed by Al-Ferron timed complexation spectrophotometer, ^27Al-NMR (nuclear magnetic resonance), and transmission electron microscopy (TEM). Coagulation efficiency of nano-Al13, polyaluminum chloride (PAC), and AlCl3 in synthetic water were also investigated by jar test. The dynamic process and aggregation state of kaolin suspensions coagulating with nano-Al13, PAC, and AlCl3 were also investigated. The experimental results indicated that the efficiency of gel column chromatography method was the highest for separating PAC solution with low Al concentration. Ethanol and acetone method was simple and could separated PAC solution with different Al concentrations, while silicon alkylation white block column chromatography method could separate PAC solution only with low Al concentration. The SO4^2-/Ba^2+ displacement method could separate PAC solution with high Al concentration, but extra inorganic cation and anion could be introduced into the solution during the separation. The coagulation efficiency and dynamic experimental results showed that nano- Al13 with a high positive-charged species was the main species of electric neutralization in coagulation process, and it could reduce the turbidity and increase the effective particles collision rate efficiently in coagulation process. Its coagulation speed and the particle size of coagulant formed were of greatest value in this study. 展开更多
关键词 nano-Al13 separation and purification coagulation dynamic processes
下载PDF
Characterization of cake layer structure on the microfiltration membrane permeability by iron pre-coagulation 被引量:2
4
作者 Jin Wang Siru Pan Dongping Luo 《Journal of Environmental Sciences》 SCIE EI CAS CSCD 2013年第2期308-315,共8页
A cake layer is formed by coagulation aggregates under certain transmembrane pressure in the coagulation-microfiltration (MF) process. The characteristics of humic acid aggregates coagulated by different iron-based ... A cake layer is formed by coagulation aggregates under certain transmembrane pressure in the coagulation-microfiltration (MF) process. The characteristics of humic acid aggregates coagulated by different iron-based coagulants, such as charge, size, fractal dimension and compressibility, have an effect on the cake layer structure. At the optimum iron dose of 0.6 to 0.8 mmol/L for ferric chloride (FC) and polymer ferric sulfate (PFS) pre-coagulation, at the point of charge neutralization for near zero zeta potential, the aggregate particles produced possess the greatest size and highest fractal dimension, which contributes to the cake layer being most loose with high porosity and low compressibility. Thus the membrane filterability is better. At a low or high iron dose of FC and PFS, a high negative or positive zeta potential with high charge repulsion results in so many small aggregate particles and low fractal dimension that the cake layer is compact with low porosity and high compressibility. Therefore the membrane fouling is accelerated and MF permeability becomes worse. The variation of cake layer structure as measured by scanning electric microscopy corresponds with the fact that the smaller the coagulation flocs size and fractal dimension are, the lower the porosity and the tighter the cake layer conformation. This also explains the MF membrane flux variation visually and accurately. 展开更多
关键词 coagulation-microfiltration process cake layer structure iron-based coagulant zeta potential porosity scanning electric microscope
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部