期刊文献+
共找到84篇文章
< 1 2 5 >
每页显示 20 50 100
Mechanism investigation on coal and gas outburst: An overview 被引量:19
1
作者 Yan-kun Ma Bai-sheng Nie +3 位作者 Xue-qiu He Xiang-chun Li Jun-qing Meng Da-zhao Song 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2020年第7期872-887,共16页
Coal and gas outburst is a frequent dynamic disaster during underground coal mining activities.After about 150 years of exploration,the mechanisms of outbursts remain unclear to date.Studies on outburst mechanisms wor... Coal and gas outburst is a frequent dynamic disaster during underground coal mining activities.After about 150 years of exploration,the mechanisms of outbursts remain unclear to date.Studies on outburst mechanisms worldwide focused on the physicochemical and mechanical properties of outburst-prone coal,laboratory-scale outburst experiments and numerical modeling,mine-site investigations,and doctrines of outburst mechanisms.Outburst mechanisms are divided into two categories:single-factor and multi-factor mechanisms.The multi-factor mechanism is widely accepted,but all statistical phenomena during a single outburst cannot be explained using present knowledge.Additional topics about outburst mechanisms are proposed by summarizing the phenomena that need precise explanation.The most appealing research is the microscopic process of the interaction between coal and gas.Modern physical-chemical methods can help characterize the natural properties of outburst-prone coal.Outburst experiments can compensate for the deficiency of first-hand observation at the scene.Restoring the original outburst scene by constructing a geomechanical model or numerical model and reproducing the entire outburst process based on mining environment conditions,including stratigraphic distribution,gas occurrence,and geological structure,are important.Future studies can explore outburst mechanisms at the microscale. 展开更多
关键词 coal and gas outburst outburst mechanism outburst model outburst simulation microscopic pore structure
下载PDF
A mathematical model of gas flow during coal outburst initiation 被引量:9
2
作者 Dmytro Rudakov Valeriy Sobolev 《International Journal of Mining Science and Technology》 SCIE EI CSCD 2019年第5期791-796,共6页
A proposed concept of outburst initiation examines the release of a large amount of gas from coal seams resulted from disintegrating thermodynamically unstable coal organic matter(COM).A coal microstructure is assumed... A proposed concept of outburst initiation examines the release of a large amount of gas from coal seams resulted from disintegrating thermodynamically unstable coal organic matter(COM).A coal microstructure is assumed to getting unstable due to shear component appearance triggered by mining operations and tectonic activities considered as the primary factor while COM disintegration under the impact of weak electric fields can be defined as a secondary one.The energy of elastic deformations stored in the coal microstructure activates chemical reactions to tilt the energy balance in a“coal–gas”system.Based on this concept a mathematical model of a gas flow in the coal where porosity and permeability are changed due to chemical reactions has been developed.Using this model we calculated gas pressure changes in the pores initiated by gas release near the working face till satisfying force and energy criteria of outburst.The simulation results demonstrated forming overpressure zone in the area of intensive gas release with enhanced porosity and permeability.The calculated outburst parameters are well combined with those evaluated by field measurements. 展开更多
关键词 coal organic MATTER coal meta-stability outburst gas flow Permeability Modeling
下载PDF
Coal and gas outburst dynamic system 被引量:23
3
作者 Fan Chaojun Li Sheng +2 位作者 Luo Mingkun Du Wenzhang Yang Zhenhua 《International Journal of Mining Science and Technology》 SCIE EI CSCD 2017年第1期49-55,共7页
Coal and gas outburst is an extremely complex dynamic disaster in coal mine production process which will damage casualties and equipment facilities, and disorder the ventilation system by suddenly ejecting a great am... Coal and gas outburst is an extremely complex dynamic disaster in coal mine production process which will damage casualties and equipment facilities, and disorder the ventilation system by suddenly ejecting a great amount of coal and gas into roadway or working face. This paper analyzed the interaction among the three essential elements of coal and gas outburst dynamic system. A stress-seepage-damage coupling model was established which can be used to simulate the evolution of the dynamical system, and then the size scale of coal and gas outburst dynamical system was investigated. Results show that the dynam- ical system is consisted of three essential elements, coal-gas medium (material basis), geology dynamic environment (internal motivation) and mining disturbance (external motivation). On the case of CI 3 coal seam in Panyi Mine, the dynamical system exists in the range of 8-12 m in front of advancing face. The size scale will be larger where there are large geologic structures. This research plays an important guid- ing role for developing measures of coal and gas outburst prediction and prevention. 展开更多
关键词 coal and gas outburst Dynamic system coal-gas mediumlGeology dynamic environment Mining disturbanceStress-seepage-damage coupling model
下载PDF
Similarity criteria and coal-like material in coal and gas outburst physical simulation 被引量:20
4
作者 Bo Zhao Guangcai Wen +5 位作者 Haitao Sun Dongling Sun Huiming Yang Jie Cao Linchao Dai Bo Wang 《International Journal of Coal Science & Technology》 EI 2018年第2期167-178,共12页
Coal and gas outburst is one of the main gas hazards in coal mines. However, due to the risks of the coal and gas outburst, the field test is difficult to complete. Therefore, an effective approach to studying the mec... Coal and gas outburst is one of the main gas hazards in coal mines. However, due to the risks of the coal and gas outburst, the field test is difficult to complete. Therefore, an effective approach to studying the mechanism and development of outburst is to conduct the similar physical simulation. However, the similarity criteria and similar materials in outburst are the key factors which restrict the development of physical simulation. To solve those problems, this paper has established similarity criteria base on mechanics model, solid-fluid coupling model and energy model, and presented high similar materials. Combining with three groups of similar number, and considering similar mechanical parameters and deformation and failure regularity, the similarity criteria of outburst is determined on the basis of the energy model. According to those criteria, we put forward a similar material consists of pulverized coal, cement, sand, activated carbon, and water. The similar material has high compressive strength and the accordant characteristics with the raw coal, include density, porosity, adsorption, desorption. The new research is promising for preventing and controlling gas hazards in the future. 展开更多
关键词 coal and gas outburst Physical simulation Similarity criteria Similar material
下载PDF
Comparing potentials for gas outburst in a Chinese anthracite and an Australian bituminous coal mine 被引量:8
5
作者 Li Guoqing Saghafi Abouna 《International Journal of Mining Science and Technology》 SCIE EI 2014年第3期391-396,共6页
Gas outbursts in underground mining occur under conditions of high gas desorption rate and gas content,combined with high stress regime, low coal strength and high Young's modulus. This combination of gas and stre... Gas outbursts in underground mining occur under conditions of high gas desorption rate and gas content,combined with high stress regime, low coal strength and high Young's modulus. This combination of gas and stress factors occurs more often in deep mining. Hence, as the depth of mining increases, the potential for outburst increases. This study proposes a conceptual model to evaluate outburst potential in terms of an outburst indicator. The model was used to evaluate the potential for gas outburst in two mines, by comparing numerical simulations of gas flow behavior under typical stress regimes in an Australian gassy mine extracting a medium-volatile bituminous coal, and a Chinese gassy coal mine in Qinshui Basin(Shanxi province) extracting anthracite coal. We coupled the stress simulation program(FLAC3D) with the gas simulation program(SIMED II) to compute the stress and gas pressure and gas content distribution following development of a roadway into the targeted coal seams. The data from gas content and stress distribution were then used to quantify the intensity of energy release in the event of an outburst. 展开更多
关键词 coal outburst gas content PERMEABILITY Stress Energy
下载PDF
Preventing Coal and Gas Outburst Using Methane Hydration 被引量:29
6
作者 吴强 何学秋 《Journal of China University of Mining and Technology》 2003年第1期7-10,共4页
According to the characteristics of the methane hydrate condensing and accumulating methane, authors put forward a new technique thought way to prevent the accident of coal and gas outburst by urging the methane in th... According to the characteristics of the methane hydrate condensing and accumulating methane, authors put forward a new technique thought way to prevent the accident of coal and gas outburst by urging the methane in the coal seams to form hydrate. The paper analyzes the feasibility of forming the methane hydrate in the coal seam from the several sides, such as, temperature,pressure, and gas components, and the primary trial results indicate the problems should be settled before the industrialization appliance realized. 展开更多
关键词 methane hydrate gas coalbed temperature PRESSURE coal and gas outburst
下载PDF
Application of the catastrophe progression method in predicting coal and gas outburst 被引量:18
7
作者 ZHANG Tian-jun REN Shu-xin +2 位作者 LI Shu-gang ZHANG Tian-cai XU Hong-jie 《Mining Science and Technology》 EI CAS 2009年第4期430-434,共5页
Based on catastrophe theory,we used the catastrophe progression method to predict the risk of coal and gas outbursts in coal mines.According to the major factors affecting coal and gas outbursts,we built a comprehensi... Based on catastrophe theory,we used the catastrophe progression method to predict the risk of coal and gas outbursts in coal mines.According to the major factors affecting coal and gas outbursts,we built a comprehensive evaluation index system and a coal and gas outburst prediction model.In addition,we performed a standard transformation for each index system;based on the degree the various indices affect the risk of an outburst,to make the data dimensionless.Based on the outburst data from eight mines,we determined catastrophe progression values and verified these values.The results show that:1) converting multi-dimensional problems into one-dimensional problems using this catastrophe progression method can simplify the steps of predicting coal and gas outbursts;2) when pre-determined catastrophe progression values are used to predict coal and gas outbursts,the predicting accuracy rate can be as high as 87.5%;3) the various coal mines have different factors inducing outbursts with varying importance of these factors and 4) the catastrophe progression values,calculated based on these factors,can be used effectively to predict the risk of outbursts in coal mines. 展开更多
关键词 standard transformation catastrophe progression method coal and gas outburst
下载PDF
△P index with different gas compositions for instantaneous outburst prediction in coal mines 被引量:10
8
作者 WU Dongmei ZHAO Yuemin +1 位作者 CHENG Yuanping AN Fenghua 《Mining Science and Technology》 EI CAS 2010年第5期723-726,共4页
In this study we measured the △P(initial speed of gas emission) index with different gas concentrations of carbon dioxide(pure CO2,90% CO2+10% CH4,67% CO2+33% CH4,50% CO2+50% CH4,30% CO2+10% CH4 and pure CH4) of coal... In this study we measured the △P(initial speed of gas emission) index with different gas concentrations of carbon dioxide(pure CO2,90% CO2+10% CH4,67% CO2+33% CH4,50% CO2+50% CH4,30% CO2+10% CH4 and pure CH4) of coal samples from the No.2 coal seam in the Yaojie Coal Mine,Gansu province,China.The effect of carbon dioxide concentration,gas composition,coal strength and particle size of coal samples on the △P index was investigated.The experimental results show that with gas of various compositions,the △P value of three samples were clearly different.The △P index of coal samples A,B and C(0.2~0.25 mm) were 4,6 and 7 with pure CH4 and 22,30 and 21 when pure CH4 was used.Carbon dioxide concentration affects the △P index markedly.The △P index increases with an increase in carbon dioxide concentration,especially for coal B.Hence,the △P index and K(another outburst index) values tested only with pure CH4 for prediction of the danger of outburst is not accurate.It is important to determine the initial speed of gas emission given the gas composition of the coal seam to be tested for exact outburst prediction. 展开更多
关键词 PREDICTION △P index outburstS coal mining gas composition carbon dioxide
下载PDF
Failure modes of coal containing gas and mechanism of gas outbursts 被引量:10
9
作者 HUANG Wei CHEN Zhanqing +2 位作者 YUE Jianhua ZHANG Yu YANG Min 《Mining Science and Technology》 EI CAS 2010年第4期504-509,共6页
In order to explain the mechanism for gas outburst, the process of evolving fractures in coal seams is described using system dynamics with variable boundaries. We discuss the failure modes of coal containing gas and ... In order to explain the mechanism for gas outburst, the process of evolving fractures in coal seams is described using system dynamics with variable boundaries. We discuss the failure modes of coal containing gas and then established the flow rules after failure. The condition under which states of deformation convert is presented and the manner in which these convert is proposed. In the end, the process of gas outbursts is explained in detail. It shows that a gas outburst is a process in which the boundaries of coal seams are variable because of coal failure. If the fractures are not connected or even closed owing to coal/rock stress, fractured zones will retain a certain level of carrying capacity because of the self-sealing gas pressure. When the accumulation of gas energy reaches its limit, coal seams will become unstable and gas outbursts take place. 展开更多
关键词 systems with variable boundaries gas outburst coal containing gas FAILURE flow rule
下载PDF
Research on coal structure indices to coal and gas outbursts in Pingdingshan Mine Area,China 被引量:13
10
作者 郭德勇 宋广太 库明欣 《Journal of Coal Science & Engineering(China)》 2002年第1期1-6,共6页
According to the feature that coal and gas outbursts is controlled by coal structure in Pingdingshan mine area, based on the study of the distribution law of disturbed coal in Mine Area and the macroscopic characteris... According to the feature that coal and gas outbursts is controlled by coal structure in Pingdingshan mine area, based on the study of the distribution law of disturbed coal in Mine Area and the macroscopic characteristics of coal structure, the characteristics and genesis to micro-pore of disturbed coal, the relationship between the type of coal structure and gas parameter, and the structural feature of coal at outbursts sites are mainly explored in this paper. Further, the steps and methods are put forward that coal structure indices applied to forecast coal and gas outbursts. 展开更多
关键词 coal and gas outbursts coal structure forecasting index
下载PDF
A coupled DEM and LBM model for simulation of outbursts of coal and gas 被引量:9
11
作者 Sheng Xue Liang Yuan +2 位作者 Junfeng Wang Yucang Wang Jun Xie 《International Journal of Coal Science & Technology》 EI 2015年第1期22-29,共8页
An outburst of coal and gas is a major hazard in underground coal mining. It is generally accepted that an outburst occurs when certain conditions of stress, coal gassiness and physical-mechanical properties of coal a... An outburst of coal and gas is a major hazard in underground coal mining. It is generally accepted that an outburst occurs when certain conditions of stress, coal gassiness and physical-mechanical properties of coal are met. Outbursting is recognized as a two-step process, i.e., initiation and development. In this paper, we present a fully-coupled solid and fluid code to model the entire process of an outburst. The deformation, failure and fracture of solid (coal) are modeled with the discrete element method, and the flow of fluid (gas and water) such as free flow and Darcy flow are modeled with the lattice Boltzmann method. These two methods are coupled in a two-way process, i.e., the solid part provides a moving boundary condition and transfers momentum to the fluid, while the fluid exerts a dragging force upon the solid. Gas desorption from coal occurs at the solid-fluid boundary, and gas diffusion is implemented in the solid code where particles are assumed to be porous. A simple 2D example to simulate the process of an outburst with the model is also presented in this paper to demonstrate the capability of the coupled model. 展开更多
关键词 coal and gas outburst Discrete element method Lattice Boltzmann method Solid-fluid coupling
下载PDF
Coal and gas outburst mechanism of the “Three Soft” coal seam in western Henan 被引量:10
12
作者 LEI DongJi LI Chengwu +1 位作者 ZHANG Zimin ZHANG Yugui 《Mining Science and Technology》 EI CAS 2010年第5期712-717,共6页
Based on the particularities of gas outbursts,i.e.,low gas bearing capacity and low gas pressure in the "Three Soft" coal seam in western Henan,we applied the theories of plate tectonics and regional structu... Based on the particularities of gas outbursts,i.e.,low gas bearing capacity and low gas pressure in the "Three Soft" coal seam in western Henan,we applied the theories of plate tectonics and regional structural evolution to investigate the mechanism of this seam and its impact on the coal seam gas formation.Our investigation revealed that coal and gas outbursts are distributed in a strip in a NW direction,with a number of high-penetration mines scattered towards the south side and low-gas mines largely located on the north side.We analyzed the statistics of 38 gas explosions and the rock-coal sturdiness number coefficient f of 167 sampling sites in the region and found the gas outburst mechanism that features a "low indicator outburst phenomenon".The mechanism is characterized by structural coal as its core,a low gas bearing capacity,low gas pressure and sturdiness coefficient f mostly less than 0.3.Our research results provide a theoretical foundation for effective control of gas disasters. 展开更多
关键词 coal and gas outburst mechanism investigation THRESHOLD sliding structure
下载PDF
Bayesian discriminant analysis for prediction of coal and gas outbursts and application 被引量:10
13
作者 WANG Chao WANG Enyuan XU Jiankun LIU Xiaofei LING Li 《Mining Science and Technology》 EI CAS 2010年第4期520-523,541,共5页
Based on the principle of Bayesian discriminant analysis, we established a model of Bayesian discriminant analysis for predicting coal and gas outbursts. We selected five major indices which affect outbursts, i.e., in... Based on the principle of Bayesian discriminant analysis, we established a model of Bayesian discriminant analysis for predicting coal and gas outbursts. We selected five major indices which affect outbursts, i.e., initial speed of methane diffusion, a consistent coal coefficient, gas pressure, destructive style of coal and mining depth, as discriminating factors of the model. In our model, we divided the type of coal and gas outbursts into four grades regarded as four normal populations. We then obtained the corresponding discriminant functions through training a set of data from engineering examples as learning samples and evaluated their criteria by a back substitution method to verify the optimal properties of the model. Finally, we applied the model to the prediction of coal and gas outbursts in the Yunnan Enhong Mine. Our results coincided completely with the actual situation. These results show that a model of Bayesian discriminant analysis has excellent recognition performance, high prediction accuracy and a low error rate and is an effective method to predict coal and gas outbursts. 展开更多
关键词 Bayesian discriminant analysis coal and gas outbursts learning samples PREDICTION
下载PDF
Experimental study on evolution law for particle breakage during coal and gas outburst 被引量:6
14
作者 Xin Wu Yawen Peng +3 位作者 Jiang Xu Qiao Yan Wen Nie Tingting Zhang 《International Journal of Coal Science & Technology》 EI 2020年第1期97-106,共10页
Coal and gas outburst is a dynamic phenomenon in underground mining engineering that is often accompanied by the throwing and breakage of large amounts of coal.To study the crushing effect and its evolution during out... Coal and gas outburst is a dynamic phenomenon in underground mining engineering that is often accompanied by the throwing and breakage of large amounts of coal.To study the crushing effect and its evolution during outbursts,coal samples with different initial particle sizes were evaluated using a coal and gas outburst testing device.Three basic particle sizes,5–10 mesh,10–40 mesh,and 40–80 mesh,as well as some mixed particle size coal samples were used in tests.The coal particles were pre-compacted at a pressure of 4 MPa before the tests.The vertical ground stress(4 MPa)and the horizontal ground stress(2.4 MPa)were initially simulated by the hydraulic system and maintained throughout.During the tests,the samples were first placed in a vacuum for 3 h,and the coal was filled with gas(CH4)for an adsorption time of approximately 5 h.Finally,the gas valve was shut off and the coal and gas outburst was induced by quickly opening the outburst hole.The coal particles that were thrown out by the outburst test device were collected and screened based on the particle size.The results show the following.(1)Smaller particle sizes have a worse crushing effect than larger sizes.Furthermore,the well-graded coal particles are weakly broken during the outburst process.(2)As the number of repeated tests increases,the relative breakage index grows;however,the increment of growth decreases after each test,showing that further fragmentation becomes increasingly difficult. 展开更多
关键词 coal and gas outburst Particle size BREAKAGE GRADATION ADSORPTION
下载PDF
Catastrophic mechanism of coal and gas outbursts and their prevention and control 被引量:10
15
作者 LI, Shugang ZHANG, Tianjun 《Mining Science and Technology》 EI CAS 2010年第2期209-214,共6页
Based on the engineering observations of coal and gas outbursts during mining processes and the experimental results,we built a thin plate mechanical model for layered and spalled coal bodies.We studied the mechanical... Based on the engineering observations of coal and gas outbursts during mining processes and the experimental results,we built a thin plate mechanical model for layered and spalled coal bodies.We studied the mechanical mechanism of outbursts,due to instability,of thin plates of coal rocks under the action of in-plane load and normal load,by using the catastrophe theory.The total potential function is derived for the layered rock system,the cusp catastrophe model for the system is established,the bifurcation set that makes the system unstable is given,the process in which gradual change of action forces leads to catastrophic change of state is analyzed,and the effect of movement path of point(P,q) in the control space on the stability of rock plate is analyzed.The study results show that during the process of coal mining,the stability of the layered coal bodies depends not only on its physical properties and dimensions but also on the magnitudes and changing paths of the in-plane load and the normal load.When the gas in the coal bodies ahead of the mining face is pre-drained,the gas pressure can be reduced and the normal load q can be lowered.Consequently,disasters such as coal and gas outbursts can be effectively prevented. 展开更多
关键词 coal and gas outbursts catastrophe theory INSTABILITY
下载PDF
Mechanical criterion for coal and gas outburst:a perspective from multiphysics coupling 被引量:6
16
作者 Ting Liu Baiquan Lin +1 位作者 Xuehai Fu Ang Liu 《International Journal of Coal Science & Technology》 EI CAS CSCD 2021年第6期1423-1435,共13页
Although a series of hypotheses have been proposed,the mechanism underlying coal and gas outburst remains unclear.Given the low-index outbursts encountered in mining practice,we attempt to explore this mechanism using... Although a series of hypotheses have been proposed,the mechanism underlying coal and gas outburst remains unclear.Given the low-index outbursts encountered in mining practice,we attempt to explore this mechanism using a multiphysics coupling model considering the effects of coal strength and gas mass transfer on failure.Based on force analysis of coal ahead of the heading face,a risk identification index C_(m)and a critical criterion(C_(m)≥1)of coal instability are proposed.According to this criterion,the driving force of an outburst consists of stress and gas pressure gradients along the heading direction of the roadway,whereas resistance depends on the shear and tensile strengths of the coal.The results show that outburst risk decreases slightly,followed by a rapid increase,with increasing vertical stress,whereas it decreases with increasing coal strength and increases with gas pressure monotonically.Using the response surface method,a coupled multi-factor model for the risk identification index is developed.The results indicate strong interactions among the controlling factors.Moreover,the critical values of the factors corresponding to outburst change depending on the environment of the coal seams,rather than being constants.As the buried depth of a coal seam increases,the critical values of gas pressure and coal strength decrease slightly,followed by a rapid increase.According to its controlling factors,outburst can be divided into stress-dominated,coal-strength-dominated,gas-pressure-dominated,and multi-factor compound types.Based on this classification,a classified control method is proposed to enable more targeted outburst prevention. 展开更多
关键词 coal and gas outburst Critical criterion Multiphysics coupling Response surface method
下载PDF
Response characteristics of gas pressure under simultaneous static and dynamic load:Implication for coal and gas outburst mechanism 被引量:4
17
作者 Longyong Shu Liang Yuan +3 位作者 Qixian Li Wentao Xue Nannan Zhu Zhengshuai Liu 《International Journal of Mining Science and Technology》 SCIE EI CAS CSCD 2023年第2期155-171,共17页
Coal and gas outbursts are dynamic disasters in which a large mass of gas and coal suddenly emerges in a mining space within a split second.The interaction between the gas pressure and stress environment is one of the... Coal and gas outbursts are dynamic disasters in which a large mass of gas and coal suddenly emerges in a mining space within a split second.The interaction between the gas pressure and stress environment is one of the key factors that induce coal and gas outbursts.In this study,first,the coupling relationship between the gas pressure in the coal body ahead of the working face and the dynamic load was investigated using experimental observations,numerical simulations,and mine-site investigations.It was observed that the impact rate of the dynamic load on the gas-bearing coal can significantly change the gas pressure.The faster the impact rate,the speedier the increase in gas pressure.Moreover,the gas pressure rise was faster closer to the impact interface.Subsequently,based on engineering background,we proposed three models of stress and gas pressure distribution in the coal body ahead of the working face:static load,stress disturbance,and dynamic load conditions.Finally,the gas pressure distribution and outburst mechanism were investigated.The high concentration of gas pressure appearing at the coal body ahead of the working face was caused by the dynamic load.The gas pressure first increased gradually to a peak value and then decreased with increasing distance from the working face.The increase in gas pressure plays a major role in outburst initiation by resulting in the ability to more easily reach the critical points needed for outburst initiation.Moreover,the stronger the dynamic load,the greater the outburst initiation risk.The results of this study provide practical guidance for the early warning and prevention of coal and gas outbursts. 展开更多
关键词 coal and gas outburst gas pressure Dynamic load outburst mechanism
下载PDF
Coal damage mechanism in the developing process of coal and gas outburst 被引量:7
18
作者 JIN Hong-wei HU Qian-ting LIANG Yun-pei 《Journal of Coal Science & Engineering(China)》 2009年第2期138-142,共5页
Based on the damage analysis of elliptical aperture,the mechanism of coal damagein the developing process of coal and gas outburst was researched.The results show thatthe damage to coal by gas is mainly caused by the ... Based on the damage analysis of elliptical aperture,the mechanism of coal damagein the developing process of coal and gas outburst was researched.The results show thatthe damage to coal by gas is mainly caused by the concentrated tensile stress appearing nearthe endpoint of the pores.Fractures in coal,gas pressure,ground stress and the tensilestrength of the coal matrix are the major controlling factors of this kind of damage.When theground stress releases abruptly and the gas pressure is high,tensile failure will occur aroundthe endpoint of the small pores due to gas pressure,and the coal may be broken up like powder;this is called pulverization.Otherwise,when the gas pressure is low,the tensile stress canonly occur around the endpoint of the large pores and fractures due to gas pressure,the fracturesin coal extend and link together,the fracture extension direction is statistically perpendicularto the direction of the minor principal stress.This kind of damage is shown as the stratifiedspall around the outburst hole. 展开更多
关键词 coal and gas outburst DEVELOPMENT coal damage fracture extend
下载PDF
Energy-limiting factor for coal and gas outburst occurrence in intact coal seam 被引量:3
19
作者 Qingyi Tu Yuanping Cheng +2 位作者 Sheng Xue Ting Ren Xiang Cheng 《International Journal of Mining Science and Technology》 SCIE EI CAS CSCD 2021年第4期729-742,共14页
This research reviewed the mechanics and gas desorption properties of intact coal,and tested the crushing work ratios of different intact coals,and then,studied the stress conditions for the failure or crushing of int... This research reviewed the mechanics and gas desorption properties of intact coal,and tested the crushing work ratios of different intact coals,and then,studied the stress conditions for the failure or crushing of intact coal and the gas demand for the pulverization of intact coal particles.When a real-life outburst case is examined,the required minimum stress for intact coal outburst is estimated.The study concludes that the crushing work ratios of three intact coal samples vary from 294.3732 to 945.8048 J/m^(2).For the real-life case,more than 2300 MJ of transport work is needed,and 10062.09,7046.57 and 5895.47 m^(3) of gas is required when the gas pressure is 1,2 and 3 MPa,respectively.The crushing work exceeds the transport work and even reaches 13.96 times of the transport work.How to provide such an enormous crushing work is an energy-limiting factor for the outburst in intact coal.The strain energy is needed for the crushing work,and the required minimum stress is over 54.35 MPa,even reaching 300.44 MPa.These minimum stresses far exceed the in-situ vertical and horizontal stresses that can be provided at the 300–700 m mining depth range. 展开更多
关键词 coal and gas outburst Intact coal Crushing work ratio Geological factors outburst energy
下载PDF
Effectiveness analysis of methane-drainage by deep-hole controlled pre-splitting blasting for preventing coal and gas outburst 被引量:5
20
作者 CAO Shu-gang LI Yong +2 位作者 LIU Yan-bao ZHANG Li-qiang XU A-meng 《Journal of Coal Science & Engineering(China)》 2009年第2期166-170,共5页
In the study of the application effectiveness of deep-hole controlled pre-splittingblasting technology,it was found through laboratory micro test and field study on a mine insouth China that under the technology,coal ... In the study of the application effectiveness of deep-hole controlled pre-splittingblasting technology,it was found through laboratory micro test and field study on a mine insouth China that under the technology,coal masses produce many irreversible cracks.Afterblasting,the nearer the distance from blasting hole,the larger the BET surface areaand volume ratio of the infiltration pore are;they increased by 11.47%and 5.73%,respectively.The coefficient of air permeability is increased 4 times.After 3 months,the gasdrainage rate was increased by 66%.In the first 15 days,the cumulative pumped gas was1.93 times of blasting before.The average absolute gas emission decreased by 63.46%.Experimental results show that deep-hole controlled pre-splitting blasting not only preventscoal and gas outburst,but also gives good economic results. 展开更多
关键词 coal and gas outburst methane-drainage pore structure deep-hole controlled pre-splitting blasting
下载PDF
上一页 1 2 5 下一页 到第
使用帮助 返回顶部